
LuaPLC
Introduction

Raritan Inc.

October 18, 2016

LuaPLC Introduction

Contents

Contents 1

1 LuaPLC briefly 2

2 Quickstart 2
2.1 Requirements . 2
2.2 Upload and Start a Lua Script . 2

3 LuaService Daemon 3
3.1 API Documentation . 4

4 USB Flash Device and Tftp Server 4

5 Lua 4
5.1 Limitation . 4
5.2 Implementation Details . 5

5.2.1 Mapping . 5
5.2.2 Load a Lua Library . 6
5.2.3 Command Line Arguments 6
5.2.4 Exit Handler . 6
5.2.5 Sleep . 7
5.2.6 Exception Handling . 7
5.2.7 Local and Remote PDU . 8
5.2.8 Out of Memory . 8

5.3 Links . 8

Page 1

LuaPLC Introduction

1 LuaPLC briefly

Lua - A powerful and fast scripting language, simple to learn and use, easy to
embed into an application

PLC - Programmable Logic Controller, a system that has a firmware and this
one can execute PLC application

The LuaPLC contains two parts. One part is a service to manage Lua scripts on
a PDU. It is called LuaService. With this service you can up/download, start/ter-
minate a script and get the output if a script produces one. The other part is the
Lua-Binding. The glue to combine Lua and PDU libraries. With this binding you
can control the whole PDU and also a remote PDU.

2 Quickstart

2.1 Requirements

• A firmware with LuaPLC support

• Our latest JSON-RPC SDK

• Python 2.7 to run luaservice client.py, a python script to handle the LuaSer-
vice

2.2 Upload and Start a Lua Script

Download the JSON-RPC SDK and unpack it. Open a console and change to the
JSON-RPC SDK directory.

Next we are going to upload a Lua script with name get info.lua. It’s located at the
folder LuaPLC Examples/basic/. To upload and start the script the option -r is
used. The whole command looks like this: ./luaservice client.py -a 10.0.42.10
-u username -p password -r LuaPLC Examples/basic/get info.lua. Cor-
rect the ip-address and username + password. Listing 1 shows the generated
ouput. Line 1 is the command to execute, lines 2 to 7 are output from the lu-
aservice client.py script and starting at line 8 is the output of the Lua get info.lua
script. To exit from the luaservice client.py script press Ctrl + c.

Listing 1: Run Lua Script Example get info.lua

1 $./ luaservice_client.py -a 10.0.42.10 -u admin -p raritan -

r LuaPLC_Examples/basic/get_info.lua

Page 2

LuaPLC Introduction

2 agent created: url https ://10.0.42.10:443

3 name get_info

4 starting get_info returns: no error

5 print output for script get_info

6 refresh interval is every second

7 to abort press Crtl -C

8 -- pdu metadata

9 ...

3 LuaService Daemon

LuaService is a daemon that runs on the PDU. The service provides following:

• Upload a Lua script

• Download a Lua scirpt

• Delete or overwrite an uploaded script

• Start a Lua script

• Terminate a Lua script

• Set diffrent options

– To start a Lua script after system start

– To restart a script after termination or crash

– Set command line arguments to control the script

• To get the output from a script if it puts something out

• Get the last state from a script (new, terminated, running)

The LuaService has an IDL file named LuaService.idl. There are JSON-RPC
and Lua-Bidings.

The script luaservice client.py uses the Python JSON-RPC-Bindings. It’s a com-
mand line tool to control the LuaService daemon.

Page 3

LuaPLC Introduction

3.1 API Documentation

The full documentation for LuaService can be found at our JSON-RPC SDK. To
find the documentation download the sdk (software development kit) from our
homepage. After downloading open the file index.html from the folder html. Click
on the site Namespace the entry luaservice to get the LuaService documentation
site.

4 USB Flash Device and Tftp Server

There is an additional way to start a Lua script. It’s possible to run a script from
USB mass storage or tftp server. The fwupdate.cfg key is execute lua script
and the value is the script name. USB flash device examples are located at Lu-
aPLC Examples/usb fwupdate.

Lua script output from USB flash device or tftp server will be stored on an extra
log file (limited size on dhcp/tftp). A dhcp/tftp located script has a timeout of
60 seconds. After that duration the script will be killed. If you unplug the USB
flash device and the script is still running then the Lua script will be killed. An
exit handler can be used but the execution time is limited to three seconds.

5 Lua

Lua is easy to learn and simple to use scripting language. See the links section to
find about more the language itself.

The Lua-Binding is just another binding like the Python binding or Perl bind-
ing. All bindings are generated from IDL files. That means you can controll more
or less the whole pdu with this binding. In addition there is a build-in JSON-RPC
client, to controll a remote PDU.

5.1 Limitation

There are some Lua script limitations:

• Memory per script

• Script size

• Amount of scripts

Page 4

LuaPLC Introduction

• Script speed

You can get the limitations from the LuaService daemon. Look for the function
getEnvironment() at API documentation.

To limit cpu usage all Lua scripts run with low priority.

5.2 Implementation Details

5.2.1 Mapping

Table 1 lists the IDL Lua type mapping.

The code listing 2 shows how access an enumeration in Lua.

Lua can return multiple values. If there more than one return/out value the
IDL Lua method mapping returns all. Listing 3 shows the method mapping. In
parameters can be used as usual.

Table 1: IDL Lua Type Mapping

IDL Lua
boolean boolean

int number
long number
float number

double number
string string
time number

enumeration variable defined at the global table
structure table

vector table
map table

interface table

Listing 2: Enumeration Type Matching, Example

-- IDL file snippet:

-- module foo {

-- enumeration bar { zero , one };

-- };

Page 5

LuaPLC Introduction

-- enumeration in Lua

myEnum0 = foo.bar.zero

myEnum1 = foo.bar.one

Listing 3: Lua Method Mapping

-- defined at luaservice.idl:

-- int luaservice :: Manager :: getScript(

-- in string name ,

-- out string script

--)

-- on in parameter (’in string name ’)

-- multiple returns in Lua (’int’ and ’out string script ’)

status , script = myManager:getScript("name of the script")

5.2.2 Load a Lua Library

The require() function is used to load a library. Typicall you type require
”Pdu” to load the pdu library and all libraries that PDU library depends on.

If you want to use the event service you have to load the event service library
with require ”EventService”. If you want to use LuaService you have to re-
quire LuaService.

5.2.3 Command Line Arguments

LuaPLC supports a feature called command line arguments. You can pass argu-
ments to your script if you start a script with the startScriptWithArgs json-rpc-
command or use the script option defaultArgs. The command line arguments
are key - value based. You get the arguments in Lua from the global table ARGS.
Listing 4 shows you how to get the values for the keys outlet and delay. Both, key
and value, are strings.

Listing 4: Get Command Line Arguments

paramOutlet = ARGS["outlet"] -- value for key outlet

paramDelay = ARGS["delay"] -- value for key delay

5.2.4 Exit Handler

The function ExitHandler() (see listing 5) will executed when the script unexpected
stops/crashes. That can happen in some cases (script will be terminated from

Page 6

LuaPLC Introduction

outside, programming failure, ...). Best practice is to write this function at the
top (after require statement) of the script and do not use global variables.

Listing 5: Exit Handler Usage

require "Pdu"

-- my special exit handler

function ExitHandler ()

print("i’m going to exit")

end

5.2.5 Sleep

The build-in sleep function let the script pause for a moment or more (Listing 6).

Listing 6: Simple Lua Sleep Function Demonstration

sleep (2) -- a 2 second pause

5.2.6 Exception Handling

To execute a function with the given arguments in procteced mode use the function
pcall(f [, arg1, ...]). You can use this function to catch exceptions. Listing 7
shows you two examples how this works and example how it works not. To get
more about pcall() take a look at Lua reference.

Listing 7: Correct Use of pcall() Example

-- catching works correct

err , errMsg = pcall(function () o3:setSettings(z) end)

err , errMsg = pcall(o3.setSettings , o3 , z)

-- catching works NOT correct

err , errMsg = pcall(o3:setSettings(z))

-- test if error happens

if err == false then

print("error catched: " .. errMsg)

else

print "no failure catched"

end

Page 7

LuaPLC Introduction

5.2.7 Local and Remote PDU

Listing 8 shows you three ways to create a PDU object. pdu1 and pdu2 reprensents
a local PDU and pdu3 represents a remote PDU.

getDefault wraps the method new(tfwSocketPath, ”pdu.0”). tfwSocket-
Path is a path and pdu.0 means the first pdu. If you have a PDU with more
’PDU’s inside than pdu.1 points to the second pdu. Typically you use the get-
Default() method to create a PDU object.

If you want to create a remote PDU object (like pdu3) you need to create a http
agent object first. The signature to create a new agent is agent.HttpAgent:new
(host, user, password [, port [, useTls]]). host, user and password are
strings. The fourth argument is port. It’s optional and a number. Default is the
port 80. The last argument useTls is also optional and a boolean. Default is false
and if set to true a secure http call (https) will be used.

The method newRemote(Well-know URI, agent) creates a new remote pdu
object. All Well-know URI’s are documented at our JSON-RPC-SDK.

Listing 8: Three Ways to Create a PDU Object

pdu1 = pdumodel.Pdu:getDefault ()

pdu2 = pdumodel.Pdu:new(tfwSocketPath , "pdu.0")

agent = agent.HttpAgent:new("myAddress", "user", "password")

pdu3 = pdumodel.Pdu:newRemote("/model/pdu/0", agent)

5.2.8 Out of Memory

Memory per script is limited. If a script allocates to much memory the script will
be killed by the system. Then a message like LuaSvcScript: Out of Memory.
Aborting ... is to read on the output.

Lua has an garbage collector. You don’t have to worry about allocation and
deallocation memory. To perform a full garbage-collection cycle call collect-
garbage(”collect”) in your Lua script. If your script creates to much new objects
in a short time then calling a gargabe-collection cycle could prevent a out of mem-
ory situation.

5.3 Links

Some Lua links:

Page 8

LuaPLC Introduction

http://www.lua.org
The offical Lua homepage. You can find there the reference manual.

http://www.lua.org/pil/contents.html
The online version of the book Programming in Lua (third edition).

http://tylerneylon.com/a/learn-lua/
Lern Lua in 15 minutes - more or less. To program with LuaPLC you need
to know sections 1, 2 and 3. Sections 3.1 and 3.2 are nice to know.

https://en.wikipedia.org/wiki/Lua (programming language)
Lua article at the Wikipedia site.

Page 9

