Raritan.

Abrand of Dlegeand

CommandCenter Secure Gateway WS-API
Programming Guide

Copyright © 2024 Raritan
September 2024
API Version 1.7.0

This document contains proprietary information that is protected by copyright. All rights reserved. No part of this
document may be photocopied, reproduced, or translated into another language without the express prior written
consent of Raritan, Inc.

© Copyright 2024 Raritan, Inc. All third-party software and hardware mentioned in this document are registered
trademarks or trademarks of and are the property of their respective holders.

FCC Information

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15
of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a
commercial installation. This equipment generates, uses, and can radiate radio frequency energy and if not installed
and used in accordance with the instructions, may cause harmful interference to radio communications. Operation
of this equipment in a residential environment may cause harmful interference.

VCCI Information (Japan)

CDEB/IZ, 77AARBRNEETT, CORBEERERBTEMRT
SERMBEPBESIESEITIEFHYNET, COBEIIRERE BV L
WEERTALOBKEBZEFHBYET, VCCI—A

Raritan is not responsible for damage to this product resulting from accident, disaster, misuse, abuse, non-Raritan
modification of the product, or other events outside of Raritan's reasonable control or not arising under normal
operating conditions.

If a power cable is included with this product, it must be used exclusively for this product.

C€ cvs 1rs1

LISTED

Raritan.

Abrand of Olegrand’

Contents

Introduction 5
ChaNEE LOg. - . o e ittt et et 5
(0o o1 1=To! n 1o ¥ =48 o 6L @A € J R P 7

Add Web Services API Client Configuration on CC-SG.ottt e 7
ACCESS INfOrmMatioN. . o oot e e e 9
WS DL URLS. & oottt ettt e e e e et e e e e e e 9
(0= o 1o = 9
Remotely Authorized Users.o e e e e e e 9

API Definitions 10

CONVENEIONS. . . oo 10

CommOoN Data TyYPes. . .ot e 10
Standard Wild Card Search Field.ot i e e e et e e 11
System Management SErVICES.ottt e e 11
DAt TP, v vttt e e e e e e e e 11

R =] Y11= 13
Authentication and Authorization Services. vttt e e e e e 14
Daata TYPES. . ottt e 14

K] =T Y = 15
Unsupported Authentication and Authorization Services. i it 17
Device Management SEIVICES. . ..ttt et e e e e e e 17
Daata TYPES. . ottt e 18

K] =T Y = 19
Node Management SEIVICES.ottt ettt e e e e e e e e e e e 20
[1= N Y/ oY= PP 20

Y] Y11= 24
User Management SerVICeS. . oot ittt et e e et et et e e e 29
Data TYPES. . ottt e 29

K] =T Y/ = 31
Logging Management SErVICES. oottt e e 32
DAt TP, vttt e e e e e e e e e 33

R =] Y 1= 34
Category Management SeIVICES. . . v vttt et et e e e e 36
Data TYPES. . ottt e 36

K] =T Y =3 37
Certificate Management 40

Raritan.

Abrand of Olegrand’

Java Keytool. . . oo e 40
OP NS S L. ot e e 40
Saving the CCSG's Server Certificate. o e e et et et 40
Installing the Client Certificate into a Key Store (Microsoft Windows)., 41
Web Services Development in Java 42
Choose a WS Library. ..o e e e e 42
Certificates information for Java Users. oo e e e 42
Setting the CCSG Address. v ittt et e e e e e et e e e e 42
Calling @ Web SErVICe. . ..ot e e e 44
Sample Application forJava. i 44
Web Services Development in Visual Studio 50
Creating a CC-SG Web Service in @ Project.o vt e e i 50
Sample Application for CH. o e 51
Web Services Development in a Shell 52
Using Wwget and CUIL. o e e 52
Web Services Development in C 56
Sample Application for C. o e 56
Index 61

Introduction

Web Services API uses standardized Web Services technologies to allow a client machine to perform
node, power, user, and logging management services.

This client is independent of the CC-SG, but aims to provide the same capabilities that the CC-SG's
HTML-based Access Client provides, through use of the APl and a TCP/IP network.

This client works independent of the Client Certificate Authentication. Enabling the Client Certificate
does not affect the WS-API feature.

This SDK allows Independent Software Vendors (ISVs) and Raritan customers to build an application
using a development environment compatible with SOAP, such as .NET and Java.

In This Chapter

ChaNgE LOg. . o vttt ettt e e 5
ConNecting to CC-SG. . . ot i it i e e e e e 7
Access INformation.t e 9
Change Log

The following changes have been made in APl version 1.6.0 in association with CC-SG v11.0:

e setUserPassword allows updating the password of managed devices.
e getinterfaceURL has some document fixes where unused inputs were removed.
e getNodeByAttribute retrieves a node by an attribute name having the specified value.

e getReportDocument retrieves accounting reports on resources like device ports.
The following changes have been made in APl version 1.5.0 in association with CC-SG v10.0:

e getAllUsers has some minor bug fixes and no longer returns remote users that have not accessed
the CC-SG.

e importCSV can now import categories, nodes, and power strips.
e Updated C# example for Visual Studio 2022.

e New shell client example.

Raritan

A brand of O fpgrarsd

The following changes have been made in APl version 1.4.0 in association with CC-SG v9.0:

e runReport no longer creates scheduled reports.
e Authentication and Authorization Services:

e Data Types:

= Connectioninfo (on page 14)

= InterfaceConnectioninfo (on page 15)

e Services:

= closelnterfaceConnections (on page 17)

= getinterfaceConnections (on page 17)

The following changes have been made in APl version 1.3.0 in association with CC-SG v8.0:

e Common Data Types:

e Common Data Types (on page 10)

e System Management Services:
e Data Types: SystemInfo (on page 12)
e Services:
= importCSV (on page 13)
= getimportStatus (on page 13)
e Authentication and Authorization Services:
e Data Types: SessionInfo (on page 14)
e Services:
= getSessions (on page 15)
= forceSignOff (on page 16)
e Device Management Services:
e Data Types: DeviceStatus (on page 18)
e Services: getDeviceStatus (on page 19)

The following change in CC-SG v7.0 affects your WS-API application:

e The certificate is updated in CC-SG 7.0. If your client uses a truststore, then it will need to be

updated.

The following changes have been made in APl version 1.2.0

e New data:
e DeviceData has new fields. See DeviceData (on page 18).

= String model - The device's model.

= Integer portCount - The port count reflects the number of feature ports such as KVM, serial,

power, and outlet.

The following changes have been made in APl version 1.1.0

e New services:

Raritan.

& brand of O fgrarad

e getDevice() - See getDevice (on page 19).
e deleteDevice() - See deleteDevice (on page 19).
e getNodeStatus() - See getNodeStatus (on page 27).
e New behaviour:
¢ Wild card behavior is more uniform now. See Standard Wild Card Search Field (on page 11).

Connecting to CC-5G

» To connect to CC-5G:

1. Establish client configuration on CC-SG Admin Client. See Add Web Services API Client Configuration
on CC-SG (on page 7)

2. Download client and server/CC-SG certificates to the client machine for use by the client. To connect
to the CC-SG using SOAP over port 9443, the client must first manually install the x.509 digital client
certificate that is generated using the CC-SG Admin Client. CC-SG contains a server certificate that
will be retrieved using SSL/TLS APIs implemented in the client application to establish a trust
relationship. See Add Web Services API Client Configuration on CC-SG (on page 7) for instructions
on creating the client certificate. See Certificates (on page 9).

Details:

e Open the PKCS #12 file using the password and store the client certificate public and private keys in
the keystore that is accessible to the WS-API client application.

e Connect on TCP Port 9443 to the CC-SG's IP address and exchange certificates using the SSL/TLS
protocol.

Note: CC-SG verifies that the client IP address matches the address set within the client
configuration on the CC-SG.

e Accept the self signed server certificate from CC-SG. This may require special handling on Java. See
Certificates information for Java users (on page 42)

3. Download WSDL files from the CC-SG. You can use a web browser or a simple client like wget to
access the WSDL URLs. See WSDL URLs (on page 9)

4. Choose a WS client library for your target language.

5. Use the tools provided with your chosen WS client library to generate stubs in your target language.
Each stub should be a complete web service operation such that all that you must do is call the web
service as a method/function with the appropriate parameters.

6. Begin writing the client. Call the signOn() service found in AuthenticationAndAuthorizationService. If

successful, the signOn() returns a session ID that you must provide for some services. Access the
other services as needed. Call signOff() to end your session when your application finishes.

Note: The signOn() service is only required for services that take the session ID as a parameter. signOff()
is only needed if signOn() is called.

Add Web Services API Client Configuration on CC-SG

You must accept the End User Agreement before adding a Web Services API client to CC-SG. See the CC-
SG Web Services API Guide for details on using the API.

Raritan.

A brand of O fpgrarsd

» To add a Web Services API:

1. Select Access > Add Web Services API. This option is available only for users with the CC Setup and
Control Privilege.

2. Read the End User Agreement.

® You can copy and paste the text to save it, or choose Secure Gateway > Print.

e After you complete configuration, this agreement will also be available in the Access menu.
3. Click Accept. The New Web Services API Configuration window opens.
4. Type in the data requested about your web services client.

e Web Services Client Name: Maximum 64 characters.

e License Key: Your license key from Raritan. Each CC-SG unit must have a unique license key.

IP Address/Hostname: Maximum 64 characters.

HTTPS Web Services Port: Read-only field. CC-SG uses port 9443 when trust establishment is
generated.

e Licensed Vendor Name: Maximum 64 characters.
5. Generate a self-signed certificate.

a. Encryption Mode: If Require AES Encryption between Client and Server is selected in the
Administration > Security > Encryption screen, AES-128 is the default. If AES is not required, DES
3 is the default.

Private Key Length: 2048 is the default. Choose 1024 through 4096.
Validity Period (days): Maximum 4 numeric characters.

Country Code: CSR tag is Country Name.

® a0 T

State or Province: Maximum 128 characters. Type in the whole state or province name. Do not
abbreviate.

City/Locality: CSR tag is Locality Name. Maximum 128 characters.

Registered Company Name: CSR tag is Organization Name. Maximum 64 characters.

5 Q9 4

Division/Department Name: CSR tag is Organization Unit Name. Maximum 64 characters.

Fully Qualified Domain Name: CSR tag is Common Name.

j. Administrator Email Address: Type in the email address of the administrator who is responsible
for the certificate request. Maximum 256 characters.

k. Challenge Password: Maximum 64 characters.

|. Subject Alternative names (SAN): Multiple entries can be added separated by commas.

Note: The Challenge Password is used internally by CC-SG to generate the certificate. You do not
need to remember it.

m. Password: Enter a keystore password. Use this password to open the .P12 file that you will save
in step 7. If you copy the generated certificate and import into your own keystore instead, you
do not need to remember this keystore password.

Click Generate Certificate. The text appears in the Certificate box.

Click Save to File to save the certificate to a .P12 file. Or, copy the generated certificate and import it
into your own keystore.

8. Click Add to save your changes.

Raritan.

& brand of O fgrarad

Access Information

WSDL URLs

The web services of the CC-SG are categorized based on their associated CC-SG functionality. You can
retrieve the WSDL that you need to develop your own applications from your CC-SG using a web
browser. You can find the URL in this document at the beginning of each service category in the API
Definitions (on page 10) section.

e System Management Services (on page 11)

e Authentication and Authorization Services (on page 14)

e Device Management Services (on page 17)

e Node Management Services (on page 20)

e User Management Services (on page 29)

e Logging Management Services (on page 32)

e (Category Management Services (on page 36)

Certificates

The CC-SG's Web Services require mutual certificates such that both the CC-SG and the WS client
present a certificate. Upon CC-SG WS client configuration, the CC-SG will know to recognize the client by
the generated client certificate. The client also needs to recognize the CC-SG certificate and present the
generated client certificate to the CC-SG.

The CC-SG WS-API server certificate (port 9443) is shared with the CC-SG's HTTPS certificate (port 443)
and is configurable using the Admin Client.

The client must accept this certificate, however, a typical WS client would not be designed to present a
certificate acceptance dialog to the user. One can simply use a trust store to contain the CC-SG's server
certificate thereby telling the client certificate library to trust the CC-SG.

Obtain the CC-SG's certificate then create a new trust store or add it to an existing one. The WS client
must be able to access the trust store to be able to communicate with the CC-SG.

If you don't want to manually add the certificate to a trust store, you can make provisions in the client
source to always trust the CC-SG or to save the CC-SG's certificate into the trust store automatically.

Remotely Authorized Users

Users authorized via remote servers require some special handling in CC-SGs Web Services. Only AD
users can be remotely authorized.

1. The signOn() service takes the plain user name just as the remote user would enter it on the CC-SG's
login page.

2. Whenever a WS client accesses a service that takes a user name as a parameter (including signOff())
and the targeted user is a remotely authorized user, the user name needs to have the remote
server's module name appended as follows: USER@MODULE

USER is the plain user name and MODULE is the name that the administrator gave the remote module
configuration in CC-SG.

Raritan.

A brand of O fpgrarsd

10

API Definitions

In This Chapter

CONVENTIONS. . .o 10
Standard Wild Card Search Field. i 11
System Management Services. vttt e e 11
Authentication and Authorization Services. i i i 14
Device Management ServiCes. v vttt e e 17
Node Management SErVICES. vt ittt ettt ettt et 20
User Management ServiCes.ttt et et e e 29
Logging Management ServiCeS. v vttt e e e e 32
Category Management ServiCes. . ..o vttt et e et 36
Conventions

The following conventions are used within this document.

e String sessionID - The authentication token that was originally assigned to the user via the SignOn

method. Whenever you see a parameter named sessionlID, it refers to this definition.

Note: The session ID will be invalidated if no session activity is detected for 5 minutes.

e String interfacelD — CC-SG generated unique identifier of an interface.

e String username - The name of a CC-SG user account.

Common Data Types

1. Exceptions

Each CC-SG WS-API service returns an exception upon error. If the error is specific to the

service, the exception will be defined as follows:
e Elements
= String code — Simple definition of the error.
= String message — Specific error message.
2. xsd:dateTime

Standard XML type used in Web services and based on ISO 8601. Your WS system will map it to

a type appropriate for your target programming language.
3. KeyValue

Raritan.

& brand of O fgrarad

Key-value pair
e Elements
= String key
= String value

Standard Wild Card Search Field

A parameter labeled as a Standard Wild Card Search Field can be a literal string or it can include wild
cards (simplified regular expression matching) to expand results. If this field is the empty string (“”), it
will match the empty string except where noted. If this field is null, the operation will ignore this field
(equivalent to *).

Wild cards are characters that can be used in search strings to yield the following results:

® % and *: Match nothing or a string of any characters.
e and ?: Match any single character

e [-]: Match a single character from some range of characters. For example, [0-9] to match any single
digit in that range.

System Management Services

This set of services is for general CC-SG settings and information.

http(s)://CC_IP_ADDRESS/CommandCenterWebServices/SystemManagementServicePort?wsdl

Data Types

SystemManagementException

All errors are returned via exception as defined under Common Data Types (on page 10).

ClusterStatus

Cluster state of both nodes.

e Elements
e String name
e String primaryAddress - Address of the primary node for identification.
e String primaryState - The primary node can have the following states:
= Standalone - There is no cluster configured.
* Primary
e String backupAddress - Address of the backup node for identification

e String backupState - The backup node can have the following states:

Raritan

A brand of O fpgrarsd

Backup
Failed
Waiting
Joining

Unknown

SystemInfo

General information about the CC-SG.

e Elements

String firmwareVersion — The version of the software running on the CC-SG.
String WSAPIVersion — The version of the WS API on the CC formatted as follows:
Major.Minor.Point

Major increments with big, new feature sets or changes to existing services. The client should be
rebuilt based on the current WSDL.

Minor increments with small functionality additions. A client rebuild may not be necessary.
Point increments for patches and bug fixes. No client rebuilding needed.

String serial — The serial number identifying the unit.

String platform — Hardware identification.

xsd:dateTime date — The current date.

int nodesUsed — The number of nodes configured.

int nodesAvailable — The maximum number of nodes licensed for configuration.

ClusterStatus - clusterStatus.

ImportStatus

Describes the current status of an import request.

e Elements

12

String id — The unique task identifier.

String status — Current state of the import task. See messages for details.
Processing — The import is currently running.

Success — The import has completed, possibly with non-fatal errors.
Failure — The import has completed unsuccessfully.

KeyValue messages|[] — Feedback from processing the import request data.

Raritan.

& brand of O fgrarad

= key — Status of this message.

= - Error - A fatal problem.

* ---- Warning — A non-fatal issue.

= value — The message string in the following format with CSV line number when applicable:
» - [LINE_NUMBER:]MESSAGE

Services

getSysteminfo
Retrieve information about the CC-SG.
e parameters

e String sessionID

e return value

e Systeminfo

importCSV

Import configuration data in a background task. Use getimportStatus() or see the Admin client task
manager for updates on the task status.

Permission: CC Setup And Control

e Parameters
® String sessionID

e String type — The type of CSV data to import corresponding to the types of imports in the Admin
client. Case insensitive. Each type has an additional permission requirement.

= Categories

= ---- Permission: User Security Management

= Devices

» - Permission: Device, Port and Node Management
* Nodes

= —-—- Permission: Device, Port and Node Management

= Power Strips

* ---- Permission: Device, Port and Node Management
= Users
» --——- Permission: User Management

e String CSV —The CSV data to import.
e Returnvalue

e |mportStatus

getlmportStatus

Retrieve the current status of an import task.

Raritan.

A brand of O fpgrarsd

Permission: CC Setup And Control

e Parameters

e String sessionID

e String taskID — Task identifier for the import task.
e Returnvalue

® |mportStatus

Authentication and Authorization Services

This set of services is for logging into and out of CC-SG.

http://CC_IP ADDRESS/CommandCenterWebServices/
AuthenticationAndAuthorizationServicePort?wsdl

Data Types

AuthenticationAndAuthorizationException

All errors are returned via exception as defined under Common Data Types (on page 10).

Sessionlnfo

Describes a user connected to the CC-SG.

e Elements
e String id — The unique session identifier.
e String user — The name of the account.

e String groups[] — The names of the account's group memberships.

String address — The client's originating address.
e String type — Login type.

xsd:dateTime startTime — When the session was created.

Connectionlnfo

An individual user's connection to an interface.

e Elements

Raritan.

14 i brand of Olegeand

String id — Connection identifier.

e String sessionld — Session used to make the connection. See getSessions().

String mode — Method used to make the connection (Direct or Proxy).

String address - The client's originating address (can be different than that of SessionIinfo when
launching an interface via URL).

e Calendar startTime — When the connection was made.

InterfaceConnectioninfo

An interface that has connections.

e Elements
e String name — Interface's name
e String nodeName — Name of the node containing the interface.
e String deviceName — Name of the parent device (if any).

e ConnectionInfo connections[]

Services

getSessions

Retrieve all sessions.

Raritan.

A brand of O fpgrarsd

15

Requires User Management permission.

e Parameters
® String sessionID
e Returnvalue

e Sessionlnfo[]

signOn()

This operation is used to login to CC-SG and authenticate with the CC-SG user database or an external
database. This is the first method which should be used once a SSL/TLS session has been established.
This operation achieves a SSO (Single Sign On) effect. The WS-API can continue to make requests
without signing in again. The signon is used to authenticate any user credentials that is using the WS-
API client as a proxy.

* parameters

e String username - user name logging into the WS-API client

e String password - associated password of the username being used by the WS-API client.
e return value

e String sessionID

signoff()

Log out a WS API user (generated by signOn()). The application can have multiple users logged in.

e String username - user name that is logging out via the WS-API client
e String sessionID

e return value void

forceSignOff

Close the specified sessions.

Requires User Management permission.

There is a short delay from a successful sign off until the session is removed from the sessions list.
A Super User session cannot be forced to close.

This function will not close the caller's session (specified by sessionID). Use signOff() to close the caller's
session.

e Parameters

Raritan.

& brand of O fgrarad

® String sessionID

e String sessions[] - Session identifiers to close. If null or the first entry is * (i.e. {“*”}), then the CC-
SG will close all sessions.

e String message — Optional message to display to the user of the closed session. If null or empty,
the CC-SG will display its default message.

Return value

e KeyValuel[] - key is the session ID. value is the status message: “Success” means that the session
is now closing; all other messages indicate an error.

closelnterfaceConnections

Close the specified interface connections (does not close parent sessions).

Requires Device, Port and Node Management permission.

A Super User connection cannot be closed by a non Super User.

Parameters
e String sessionID

e String connections[] — Connection identifiers to close. If null or the first entry is * (i.e. {“*"}),
then the CC-SG will close all connections.

Return value

e KeyValue[]- key is the connection ID. value is the status message: “Success” means that the
connection is now closing; all other messages indicate an error.

getinterfaceConnections

Retrieve all the active interface connections.

Requires Device, Port and Node Management permission.

Parameters
® String sessionID
Return value

¢ |nterfaceConnectioninfo[]

Unsupported Authentication and Authorization Services

The following Authentication and Authorization services are not supported and should not be used.

authenticate()
getAllUserGroups()
getAllUserGroupsCount()

Device Management Services

This set of services is for getting information about devices that the CC-SG is managing.

Raritan.

A brand of O fpgrarsd

17

http(s)://CC_IP_ADDRESS/CommandCenterWebServices/DeviceManagementServicePort?wsdl

Data Types

DeviceData

Contains information about a device.

e Elements

String name

String type — Product name.

String address — Host or IPv4 address.
String gateway — IPv4 gateway address.
String subnet — IPv4 subnet mask.

String addressIPv6 — IPv6 address.

String gatewaylIPv6 — IPv6 gateway address.
String prefixLengthIPv6 — IPv6 routing data.
String model -- The device's model.

Integer portCount -- The port count reflects the number of feature ports such as KVM, serial,
power, and outlet.

Integer discoveryPort — Discovery port.

Integer httpPort — HTTP port.

Integer httpsPort — HTTPS port.

Integer heartbeat — Heartbeat (seconds)

Boolean allowDirectDeviceAccess — Allow Direct Device Access feature.

String encryption — Type of encryption used for communications with this device.
String firmware — Firmware version on this device.

String serial — Serial number of this device.

String description

DeviceManagementException

All errors are returned via exception as defined under Common Data Types (on page 10).

DeviceStatus

Describes the current state of the appliance.

e Elements

18

String name

String status — Possible values:

Raritan

& brand of O fgrarad

= Up — Available for use.
= Down — Unavailable for use.

» Paused — Management of this appliance is paused.

Locked — Unavailable because of appliance upgrade.

Services

getDevice

Retrieve one or more devices.

e Parameters
® String sessionID

e String name — A standard wild card search field. See Standard Wild Card Search Field (on page
11).

e Return value

e DeviceData[]

deleteDevice

Stop management and remove the device from the CC.

e Parameters
e String sessionID
e String name

* boolean force — Some situations, like the device being unavailable, require confirmation before
the device can be deleted. Set this parameter to true to indicate confirmation.

getDeviceStatus

Retrieve the status of appliances.

e parameters
® String sessionID

e String name - Appliance name to find. A standard wild card search field. See Standard Wild Card
Search Field

e return value

e DeviceStatus]]

setUserPassword

This operation allows update of a user's password on a managed device.

Permission: "Device Configuration and Upgrade Management", or "Port and Node Management"

® parameters

Raritan.

A brand of O fpgrarsd

® String sessionID

String device — Name of the device to access

String user — Name of the user to modify.

e String password — The user’s new password.

Node Management Services

This set of services is for modifying nodes in CC-SG.

http://CC_IP ADDRESS/CommandCenterWebServices/
NodeManagementServicePort?wsdl

Data Types

AccessMethod

Description of a means of accessing a node.

e Elements

e String methodName - the name of the application used for access. Some examples of the
application name are "SSH Client (SSH)", “MPC”, "RemoteDesktop Viewer (RemoteDesktop)"
and "iLO RemoteConsole".

e String methodType - “inband” or “outband” - Inband refers to any interface that uses only the
TCP/IP network to directly connect to the node. Outband is based on reaching a Raritan device
product via TCP/IP and from the device connecting to the KVM or serial port of the node.

e String InterfacelD - CC-SG generated string which uniquely identifies the interface within CC-SG
e String InterfaceName - CC-SG generated string which identifies the interface within CC-SG

e String applicationld - CC-SG generated string which uniquely identifies the access application
type within CC-SG for out-of-band access designated for use within CC-SG. String is null if not
applicable to the interface.

e boolean userAuthorizedForMethod - value of the authorization for the user to access this
interface with this application. If the user has permission, the value is TRUE.

AssociationData

Represents a category based label placed on the node.

e Elements
e String category - The unique name identifying the category.

e String element - The value from the category that labels this node.

InterfaceAvailabilityAndStatus

Describes the current state of the interface.

e Elements

Raritan

& brand of O fgrarad

String interfacelD

String availability — Text description of the availability field. For example, if an operation is still in
progress, availability will indicate "Processing." Availability may be Idle, Busy, or Processing.

String status — Text description of the status field. For example, Up or Down.

InterfaceData

Description of the node's attachment to the end point.

e Elements

String ip - host IP address for the interface. This field is filled in for in-band interfaces only;
otherwise, it is the empty string.

String hostname - hostname for the interface (for in-band interfaces only) based on query using
the supplied host IP address.

String portName i.e the name for the port for out-of-band interfaces only; otherwise it is the
empty string.

String portlID - the Raritan port ID for out-of-band interfaces. This is a unique generated value
that occurs as part of configuration of a Raritan devices' ports. This field is empty for in-band
interfaces.

String deviceName i.e the name of the Raritan device. This field is filled in only for out-of-band
interfaces; otherwise, it the empty string.

String name -

String id - Unique identifier referenced by AccessMethod
String description - User description of the interface
String type - Function of the interface

Integer portNumber - Physical port number of the device.

NodeData

Description of a node's configuration.

e Elements

Raritan

A brand of O fpgrarsd

21

e String name
¢ |nterfaceData[] interfacesData — The interfaces attached to this node

e AssociationDatal[] associations - Category values with which the node is associated
NodePowerStatus
Describes the power status of a node through its interfaces.

e Elements

e PowerlnterfaceStatus [] powerlnterfaceStatus — Contains an entry for each of the node's power
interfaces.

NodeStatus

Current status of a node's interfaces.

e Elements
e String name

¢ InterfaceAvailabilityAndStatus[] interfaces — The status of each of the node's interfaces.

PowerlnterfaceStatus

Describes the interface and power operation statuses of a power interface.

e Elements
¢ InterfaceAvailabilityAndStatus availabilityAndStatus — The general interface status.
e String operation — The most recent power operation.
® boolean inProgress — true if the operation is still running.

® boolean successful —true if the operation has finished successfully. If both successful and
inProgress are false, then the operation failed.

e String failureReason — If the operation failed, then this field will typically contain a description of
the failure.

e xsd:dateTime timeStamp — The time that the CC-SG updated the power operation status.

URLObject

Components to form a URL to access the CC-SG.

e Elements

Raritan

& brand of O fgrarad

e String protocol - the protocol used - either http or https
e String port - the TCP port to be used for connecting to the interface: port 80 or port 443.
e String path - the path to the actual webservice servlet

e String tokenKey - the name of the property to be used for the token. The value is always
“session|D”

e String tokenValue - the actual property value corresponding to the tokenKey from above
Constructing a URL from URLObject
Combine the string elements of the returned URLObject (italicized) in the following order with other
data (plain):
protocol + :// + CCSG Address + : + port + path + ? + tokenKey + = + tokenValue

Given the following URLObject data:

e protocol - http

e port-80

e path - /CommandCenterWeb/index_frames.jsp

e tokenKey - sessionID

e tokenValue - 03AC4A3B1EE2CB665564BEB1ACAA8401

The constructed URL should look similar to this one:

http://10.0.0.101:80/CommandCenterWeb/index_frames.jsp?
session|D=03AC4A3B1EE2CB665564BEB1ACAA8401

Note: A single question mark (?) delimits parameters from the document path. Parameters themselves
are separated from one another using an ampersand (&). The path from getinterfaceURL() will already
contain parameters, so you must append the sessionID using an ampersand delimiter in that case.

NodeManagementException

All errors are returned via exception as defined under Common Data Types (on page 10).

Raritan.

A brand of O fpgrarsd

Services

getCCSGAppletURL

This operation retrieves the full URL to the CC-SG Admin Client applet in order to launch the main CC-SG
client. When this URL is opened in a browser it will display the main CC-SG client, if the sessionID is
valid, or the login screen, if the sessionlID is invalid.

e parameters
® String sessionID

e return value URLObject

getCCSGHTMLClientURL

This operation retrieves the full URL for the CC-SG Access Client HTML pages to launch the main access
CC-SG page. When this URL is opened in a browser it will display the main access CC-SG page if the
sessionID is valid, or the login page if the sessionID is invalid.

® parameters
e String session|D - authentication token granted for use by CCSG in SignOn()

e return value URLObject

getinterfaceURL

This operation retrieves a URL used to connect directly to an interface and launch the associated client.
This URL can be opened in a web browser to initiate the connection. The signOn method must have
previously been called for this user.

e Parameters
e String sessionID
e String interfacelD CC-SG generated string which uniquely identifies the interface within CC-SG
e String unused-deprecated and ignored
e return value:
e URLObject

getAccessMethodsForNode

This operation retrieves all the available access methods (applications) for a given node in the form of
an array. Each element in the array has an indicator to denote whether the passed in username has
access to particular applications.

® parameters

Raritan

& brand of O fgrarad

e String nodeName - name based on the configured name in CC-SG. The node name that the user
enters in the CC-SG is not guaranteed to be unique so the system appends a number in
parentheses to make the name unique. For example, the name “MyServer” becomes
“MyServer(1) if another node is already using that name.

e String username - CC-SG user for which the Access Methods are to be returned.

e return value AccessMethod []

getAccessMethodsForNodeBylnterfacelD

This operation retrieves the interface information that defines a particular access method based on the
unique interface ID.

® parameters
e String interfacelD

e String username. This service uses the username to determine whether that user has permission
to access the node and, thereby, the AccessMethod (indicated by
AccessMethod.userAuthorizedForMethod).

e return value
e AccessMethod []

getNodeByName
Retrieve nodes by name.
e parameters

® String sessionID

e String name - Node name to find. A standard wild card search field. See Standard Wild Card
Search Field (on page 11).

e return value
e NodeData[]

getNodeByAttribute

Retrieve a node by an attribute name having the specified value.

Permission: “Device, Port and Node Management”, “Node In-band Access”, or “Node Out-of-band
Access”

® parameters

Raritan.

A brand of O fpgrarsd

26

® String sessionID

e String attribute — Specify the search field. Case insensitive.

= CIM Serial

e String value — Find the node with its attribute matching this value.
e return value

e NodeData[]

getNodeByInterfaceName

Retrieves nodes by the name of the interface.

® parameters
e String sessionID

e String interfaceName - Interface name to find. A standard wild card search field. See Standard
Wild Card Search Field (on page 11).

e return value
e NodeData[]

getNodeByAssociation

Find a node based on the category label applied to it.

® parameters

Raritan.

& brand of O fgrarad

® String sessionID

e String category - The unique name identifying the category

e String element - The value from the category that labels this node
e returnvalue

e NodeData[]

getNodesForUser

Retrieves all nodes available to the specified user.

e parameters

e String username
e return value

e NodeData []

getNodeStatus

Retrieve the status and availability of every interface for a node.

® Parameters
e String sessionID

e String name — A standard wild card search field. See Standard Wild Card Search Field (on page
11).

e Returnvalue
e NodeStatus|]

addAssociationToNode

Associate the node with one or more category values

e parameters
e String sessionID
e String nodeName - The unique name of the node to modify
e AssociationData[]associations

e return value

e boolean true on success

deleteAssociationFromNode

Disassociate the node from one or more category values

® parameters

Raritan.

A brand of O fpgrarsd

® String sessionID
e String nodeName - The unique name of the node to modify
e AssociationData[]associations

e returnvalue

e boolean true on success

renameNode

This operation changes the name of the specified node to the new name.

e parameters
e String sessionID
e String currentNodeName - The name of the node that one wants to modify.
e String newNodeName - The name to take the place of the current one.

e return value

e boolean true

getNodePower

Returns the power status of each interface of the node, including the status of the latest power
operation. The user must have permission to access the node.

In addition to the normal states, the availability state of each interface will be set to “Processing” if the
state is pending a change because of a power operation.

® parameters

® String sessionID

e String nodeName — Return the status of the interfaces of the node with this name.
e return value

¢ NodePowerStatus

setNodePower

Initiate a power operation on the interfaces of a node. This command requires the user to possess node
permissions allowing power control of the node.

Note: Power operations are in progress after setNodePower() returns. The session must remain valid
during the lifetime of the operation, otherwise, the operation will fail. Do not call signOff() until the
operation is complete (see getNodePower()).

e parameters
e String sessionID
e String nodeName — The name of the node on which to operate.

e String[]powerlnterfacelD — An array of each of the node's interfaces on which to perform the
power operation. Each interface must be a member of the node.

Raritan.

& brand of O fgrarad

String powerOperation — The power operation to perform on the interfaces. It must be one of
the following strings, as supported by the specified power interface. All operations are not
supported by all power interfaces. See Raritan's CommandCenter Secure Gateway
Administrators Guide.

power on

power off

power cycle
graceful shutdown
suspend

Integer sequencelnterval — The interval, in seconds, between successive operations of the
specified power interfaces. Applicable to power on and power off only.

String reasonForAccess — Text used to track access by user, required when Node Auditing is
enabled for the user's group.

e return value

boolean true

User Management Services

This set of services is for adding, modifying, and removing users from the CC-SG database as is typically
done by system administrators.

http (

s)://CC_IP ADDRESS/CommandCenterWebServices/

UserManagementServicePort?wsdl

Data Types

CCSGUser

The settings of a user on the CC-SG.

e Elements

String name — The unique user name used when logging into the CC-SG.

String password — The user's password (required if remoteAuthentication is false). This value will
always be null when returned from getUser().

boolean loginEnabled — The user may use the account when true.
boolean remoteAuthentication — true if the user will be remotely authenticated.

boolean passwordExpirationEnabled — When true, the user will have to change their password
periodically as indicated by passwordExpirationPeriod.

Integer passwordExpirationPeriod — The user will have to reset their password after this many
days (required if passwordExpirationEnabled is true). This value will always be clear if this
feature is disabled.

boolean forcePasswordChange - When true, the user will have to change their password on the
next login. When the user is first added with addUser(), forcePasswordChange will be forced to
true. The value of forcePasswordChange can be modified with editUser().

String fullName — The user’s full name to be used when generating reports and notifications to
more easily identify the user. (optional)

Raritan

A brand of O fpgrarsd

29

30

e String emailAddress — (optional)
e String phoneNumber — (optional)

e String groups[] — An array of the name(s) of the group(s) to which this user is a member. These
are the groups from which this user's permissions will be assigned.

UserManagementException

All errors are returned via exception as defined under Common Data Types (on page 10).

Raritan.

& brand of O fgrarad

Services

getUser

Returns configuration data for the specified user.

e parameters

® String sessionID

e String userName - The login name of the desired user.
e return value

e CCSGUser - The requested user.

getAllUsers

Returns an array containing the CCSGUser data for each local user defined on the CC-SG, similar to the
Admin client’s All Users Data report.

e parameters

e String sessionID
e returnvalue

e CCSGUser []

addUser
Add a new user configuration to the CC-SG.
® parameters
e String sessionID
e CCSGUser user — The new user's settings.

e return value

e boolean true

editUser
Change an existing user's settings, excluding groups.
e parameters
e String sessionID
e CCSGUser user — The new user's settings.
e return value
e boolean true
deleteUser

Remove the user with the provided name from the CC-SG.

Raritan

A brand of O fpgrarsd

31

Note: You cannot delete the SuperUser.

e parameters

® String sessionID

e String userName - The name of the user to delete.
e return value

e boolean true

addUserToGroup

Assign a user to a group to control their access of the CC-SG.

Note: You cannot add users to or delete users from the SuperUser group.

e parameters

e String sessionID

e String userName - The name of the user to modify.

e String[lgroupName - An array of group names of which the user shall be a member.
e returnvalue

e boolean true

deleteUserFromGroup

Remove a user from a group to control their access of the CC-SG.

Note: If this operation deletes all of a user's groups, then the user itself shall be deleted.

e parameters

e String sessionID

e String userName - The name of the user to modify.

e String[lgroupName - An array of group names in which the user shall no longer be a member.
e returnvalue

e boolean true

Logging Management Services

This set of services is for retrieving log records from the CC-SG database.

http(s)://CC_IP ADDRESS/CommandCenterWebServices/
LoggingManagementServicePort?wsdl

Raritan.

& brand of O fgrarad

Data Types

ReportRecord

The components of a CC-SG log record. This data encompasses multiple types of logs such that not all
elements will be populated for a particular record instance.

e Elements

Integer recordNumber — The ordinal number of the record relative to the requested report.
Numbering begins at one.

xsd:dateTime entryDateTime — The date and time of the record.
String userName — The user to which the entry corresponds.
String userlPAddress — The IP address of the corresponding user.
String messageType — The message type of the report entry. The following are supported:
Access Audit

Access Connection

Authentication

Error

Power

Tasks

User Maintenance

String message — The message text describing the user activity.

String deviceName — The managed device the report entry corresponds to, provided for
message type Access Connection.

String nodeName — The node the report entry corresponds to, provided for message type Access
Connection.

String portName — The managed device port that the report entry corresponds to, provided for
message type Access Connection.

String interfaceName — The node interface the report entry corresponds to, provided for
message type Access Connection.

String interfaceType — The node interface type the report entry corresponds to, provided for
message type Access Connection.

String accessMode — The access mode used.

String reasonForAccess — The reason for access provided by the user.

ReportData

This data describes a report generated using runReport(). The information can be used to manage the
report and retrieve further results.

e Elements

Raritan

A brand of O fpgrarsd

33

e String reportID — Identifier used to reference the report.

¢ Integer totalINumberOfRecords — The total number of records available for this report. This value
is not necessarily the same as the number of ReportRecord entries included.

e ReportRecord[] records — The first set of results for the report.

LoggingManagementException

All errors are returned via exception as defined under Common Data Types (on page 10).

Services

runReport

Returns a log report formed using the request parameters.

The client should call deleteReport() for every call to runReport(). See deleteReport (on page 36). If
deleteReport() is not called, the session manager will remove remaining report tasks when the session
is closed by any of the following methods.

1. The client calls signOff() to close the session.
2. The session times out and the system closes it.
3. An administrator closes the session from the Active Users report using the CC-SG Admin Client.
® parameters
e String sessionID

e xsd:dateTime startDateTime — Return records after this date and time. If null, the value will be
the start of the current day.

e xsd:dateTime endDateTime — Return records up until this date and time. If null or beyond the
CC-SG's current time, the value will be the current time.

e String userName — Restrict results to those of this user name. A standard wild card search field.
See Standard Wild Card Search Field (on page 11). The empty string will be ignored like null.

e String userlPAddress — Restrict results to those of this IP address. A standard wild card search
field. See Standard Wild Card Search Field (on page 11). The empty string will be ignored like
null.

e String messageType — Search for messages in the specified category. If null or empty, include all
message types. The following are supported:

= Access Audit

= Access Connection
= Authentication

= Error

= Power

= Tasks

= User Maintenance

e String message — Restrict results to those containing this message. A standard wild card search
field. See Standard Wild Card Search Field (on page 11). The empty string will be ignored like
null.

Raritan.

& brand of O fgrarad

¢ Integer numberOfRecordsToGet — The maximum number of records to retrieve. If not specified,
the service retrieves all available records, as reported by totalNumberOfRecords. When
specified, can be used to limit the number of records retrieved. There is a maximum limit of
10,000 records.

e return value

® ReportData

getReportRecords

Retrieve a set of records from a previously generated report starting at the specified record index up to
the maximum number of records indicated.

e parameters
® String sessionID
e String reportID
® Integer startingAtRecord — The index of the first record to retrieve. Indexing begins at zero.

e Integer numberOfRecords — The maximum number of records to retrieve. If not specified, the
service retrieves all available records, as reported by totalNumberOfRecords. When specified, can
be used to limit the number of records retrieved. There is a maximum limit of 10,000 records.

e return value

e ReportRecord(]

getReportDocument

Retrieve accounting reports on resources like device ports. The required permission is specific to each
report.

e parameters
e String sessionID
e String type — Specify the category of accounting. Case insensitive.
= Device

e String report — The accounting asset. Case insensitive. See Reports and Options below for report
descriptions.

= Query

e KeyValue[] parameters — Some reports accept parameters to determine the accounting results.
Keys are case insensitive. See Reports and Options below for the options each report accepts.

e Return value

e String — The requested report in CSV format.

Reports and Options:

Together, type and report specify the report to generate.

Type ReportValue Description
Value
Device Query Retrieve accounting of device ports (See Query Port Report

in Admin Guide).

Raritan

A brand of O fpgrarsd

Type ReportValue Description
Value

Permission: Device, Port and Node Management
Accepts the following parameters:

Paused — True includes paused ports; false or missing
excludes paused ports. (optional)

deleteReport

Delete a previously requested report; otherwise, reports are deleted after the user session is
terminated.

® parameters

String sessionlID

e String reportiD
e return value

e boolean true

Category Management Services

This set of services is for getting and setting categories for CC-SG nodes.

http(s)://CC_IP ADDRESS/CommandCenterWebServices/
CategoryManagementServicePort?wsdl

Data Types

CategoryData

Stores information about a category and its elements.

e Elements

e String name

boolean node - Applicable to nodes

boolean device - Applicable to devices

e String type - Data type of elements: "String" or "Integer"

String[lelements - The values of the elements

CategoryManagementException

All errors are returned via exception as defined under Common Data Types (on page 10).

Raritan

& brand of O fgrarad

Services

getCategory

Retrieve one or more categories including element values.

® parameters

® String sessionID

e String name - The name of the category. A standard wild card search field. See Standard Wild

Card Search Field (on page 11).
e return value

e CategoryData[]

addCategory
Add a new category to CC-SG.
® parameters

e String sessionID

e String name - Unique name to identify the category

boolean node - Applicable to nodes

boolean device - Applicable to devices
e String type - Data type of elements: "String" or "Integer"
e return value

e boolean true on success

editCategory

Facilitates changes to the editable components of a category.

® parameters

Raritan.

A brand of O fpgrarsd

37

38

® String sessionID
e String currentName - the name of the existing category

e String newName - the new name for the category (same as currentName if no change)

boolean forNode
e boolean forDevice
e return value

e boolean true on success

deleteCategory

Remove one category.

® parameters
e String sessionID
e String name

e return value

e boolean true on success

addElementToCategory

Add one or more values to the specified category

e parameters

e String sessionID

e String category - The unique name identifying the category

e String[]elements - Each entry in this array is a value for the category.
e returnvalue

¢ boolean true on success
renameElementinCategory
Change the value of a category's element.
e parameters

® String sessionID

e String category - The unique name identifying the category

e String currentElement - The current value of the element

e String newElement - The new value intended for the element
e return value

® boolean true on success

deleteElementFromCategory

Remove one or more values from the specified category.

e parameters

Raritan

& brand of O fgrarad

® String sessionID

e String category - The unique name identifying the category

e String[]elements - Each array entry is a value to be removed from the category
e returnvalue

e returns boolean true on success

Raritan.

A brand of O fpgrarsd

39

40

Appendix A Certificate Management

CC-SG web services require HTTPS which may require your client to trust the CC-SG certificate explicitly
or via the local trust store. The CC-SG requires WS-API clients to present the client certificate created
during configuration. This appendix contains some tips on managing these certificates. See the
respective software’s documentation for more details.

In This Chapter

Java keytool. . ..o e 40
OPENSS L. . e e e 40
Saving the CCSG's Server Certificate.t 40
Installing the Client Certificate into a Key Store (Microsoft Windows). 41

Java keytool

Viewing a certificate:

keytool -printcert -file CC-SG.pem

Add a certificate to a new key store:

keytool -importcert -alias [ADDRESS] -file CC-SG.cert -keystore jssecacerts -storepass yourpassword
View the contents of a key store:

keytool -list -keystore jssecacerts

OpenSSL

Viewing a certificate:

openssl x509 -in CC-SG.pem -text

Changing a certificate's format:

openssl x509 -in CC-SG.cert -out CC-SG.pem -outform PEM -inform DER
Saving the CCSG's Server Certificate

To save the certificate in the browser:

Browsers typically offer an option to save the server certificate for users to verify the server’s identity.

1. Opena URL to your CC-SG using HTTPS.

Raritan

& brand of O fgrarad

https://CCSGADDRESS
2. Click on the padlock, which is usually next to the URL, to access the server certificate.
3. Save the certificate. Please consult documentation for your specific browser.

e Firefox has a download section. Get the PEM (cert).

® In Edge, select Copy to File under the Details tab.
» To save the certificate from the Admin Client:

Choose Administration > Security > Certificate.

Select "Export current certificate and private key".
Click Export to file.

Copy the PEM formatted certificate text field to a file.

Pw N PE

Installing the Client Certificate into a Key Store (Microsoft Windows)

1. Save the PKCS12 certificate file on your client computer. See Add Web Services API Client
Configuration on CC-SG (on page 7).

2. Double click the client certificate file to open the Certificate Import Wizard.

3. Install the certificate in a place where your client will be able to access it, such as Personal.

You can also use Microsoft Management Console (MMC) to manage certificates with more control than

the methods above. For example, add the client certificate into a specific store such as Current User or
Local Computer.

Raritan.

A brand of O fpgrarsd

41

Appendix A Web Services Development in Java

This section focuses on CC-SG specific topics regarding WS client development in Java.

In This Chapter

Choosea WS Library. e 42
Certificates information forJavausers. o i 42
Setting the CCSG Address.o i it e et et 42
CallingaWeb Service.o e 44
Sample ApplicationforJava. i e 44

Choose a WS Library

The Java API for XML Web Services (JAX-WS) is the common standard for deploying and consuming Web
Services in Java. Glassfish contains a JAX-WS Reference Implementaion under Metro which can be found
at https://javaee.github.io/metro-jax-ws/. This document is based on version 2.1.5, but you may use a
different version or an entirely different WS system to suit your needs.

The Glassfish implementation includes a tool called wsimport that one can use to generate WS client
code for one's application using WSDL files from the WS server. Such tools are invaluable in WS
development. Please consult the documentation of your chosen JAX-WS system for details on wsimport,
other tools, and non-CCSG related information.

Certificates information for Java users

Create a truststore for the trusted server certificate, or add the certificate to a truststore you already
use.

To tell a Java client about the trusted server certificate:
You can do this via -Djavax.net.ssl.trustStore=jssecacerts.

Save the client certificate from the CC-SG's WS client configuration window. The file is in PKCS12 format.
You can pass the client certificate to a Java client using the following parameters:

-Djavax.net.ssl.keyStore=new client.pl2

-Djavax.net.ssl.keyStorePassword=pass (Where pass is the password you entered in
the client configuration page.)

-Djavax.net.ssl.keyStoreType=pkcsl?2

Setting the CCSG Address

Downloading the WSDL files from port 8080 of the CC-SG is the default source of the WSDL files,
however, their contents will reflect port 8080 of your CC-SG. Further, you might wish to use your WS
client with a different CC-SG or you might change the CC-SG's address.

Raritan

& brand of O fgrarad

Each WSDL file contains an element like the following:

<soap:address location="https://10.0.0.101:9443/
CommandCenterWebServices/AuthenticationAndAuthorizationServicePort"/>

Before generating the stubs, you can edit this address within each file to reflect the WS port of 9443,
the WS protocol of HTTPS, and the address of your CC-SG. After generating and building the source,

your client will already know the address, protocol, and port to use to access WS on your CC-SG.

Manually editing the WSDL files requires less coding. Or, you can tell your WS stubs the URL of your own
choice at run time.

» Sample method to create a URL to access a CC'-SGs web services:

public static void set service end point(Service service,
BindingProvider port)

Pattern pattern = Pattern.compile("CC SG ");

Matcher matcher

pattern.matcher (service.getServiceName () .getLocalPart ());
String service name = matcher.replaceFirst("");

String ccsg port = "9443";

String ccsg _address = "10.0.0.101";

port.getRequestContext () .put (
BindingProvider.ENDPOINT ADDRESS PROPERTY,
"https://" + ccsg_address + ":" + ccsg port +
"/CommandCenterWebServices/" +

service name + "Port?wsdl");

}

Call the method from your application for each service object. This example uses
AuthenticationAndAuthorizationService:

CCSGAuthenticationAndAuthorizationService service = new
CCSGAuthenticationAndAuthorizationService () ;

AuthenticationAndAuthorizationService service port =
service.getAuthenticationAndAuthorizationServicePort (),

Raritan.

A brand of O fpgrarsd

43

44

set service end point(service, (BindingProvider)service port);

This procedure must be done for each service, like NodeManagementService, to connect to the
intended CC-SG.

Calling a Web Service

JAX-WS requires an instance of the service class for the desired service generated by wsimport. The
service object contains a port object that one can use to call the service methods as shown below:

CCSGAuthenticationAndAuthorizationService service = new
CCSGAuthenticationAndAuthorizationService();

AuthenticationAndAuthorizationService service_port =
service.getAuthenticationAndAuthorizationServicePort();

try

{

String sessionlD = port.signOn(user, password);

} catch (security.service.webservice.bl.cc.raritan.com AuthenticationAndAuthorizationException ex)
{

System.out.printIn("AuthenticationAndAuthorizationException: " + ex.getFaultinfo().getMessage());
System.out.printin("\t" + ex.getFaultinfo().getCode());
System.out.printIn("signOn() for user " + user + " failed.");

}

Sample Application for Java
/*

* RCSfile:
* Revision:

* Date:

* This source code is owned by Raritan, Inc. and is confidential
* and proprietary information distributed solely pursuant to a

* confidentiality agreement or other confidentiality obligation.

Raritan.

& brand of O fgrarad

* It is intended for informational purposes only and is distributed

* "as is" with no support and no warranty of any kind.

* Copyright (c) 2009 Raritan, Inc. All rights reserved.

* Reproduction of any element without the prior written consent of
* Raritan, Inc. 1is expressly forbidden.

*/

import
security.service.webservice.bl.cc.raritan.com.AuthenticationAndAuthorizationService;

import
security.service.webservice.bl.cc.raritan.com.CCSGAuthenticationAndAuthorizationServic

import security.service.webservice.bl.cc.raritan.com.types.*;

import
node.service.webservice.bl.cc.raritan.com.NodeManagementService;

import
node.service.webservice.bl.cc.raritan.com.CCSGNodeManagementService;

import node.service.webservice.bl.cc.raritan.com.types.*;
// change server address

import javax.xml.ws.Service;

import javax.xml.ws.BindingProvider;

import java.util.regex.Pattern;

import java.util.regex.Matcher;

// user input

import java.io.*;

public class SampleClient

public static String ccsg address = "10.0.0.101", ccsg port = "9443";

Raritan.

& brand of O logeand 45

static void
auth exception handler(security.service.webservice.bl.cc.raritan.com.AuthenticationAr
ex,

String name)

System.out.println("AuthenticationAndAuthorizationException: " +
ex.getFaultInfo () .getMessage());
System.out.println("\t" + ex.getFaultInfo().getCode());

// ex.printStackTrace () ;

public static void set service end point(Service service,
BindingProvider port)

Pattern pattern = Pattern.compile("CC SG ");

Matcher matcher
pattern.matcher (service.getServiceName () .getLocalPart ());

String service name = matcher.replaceFirst("");
if(ccsg port.length() < 1)

ccsg _port = "9443";

if(ccsg address.length() > 0)

{

port.getRequestContext () .put (
BindingProvider.ENDPOINT ADDRESS PROPERTY,
"https://" + ccsg _address + ":" + ccsg port +
"/CommandCenterWebServices/" +

service name + "Port?wsdl");

}

Raritan.

& brand of O fgrarad

static String get input(String message)

System.out.println (message) ;

BufferedReader reader = new BufferedReader (new
InputStreamReader (System.in)) ;

String name = null;
try |
name = reader.readLine();

} catch (IOException ioe)

System.err.println ("Could not read input.");

return null;

if (name.equals (""))
return null;

return name;
public static void main (String[] args)

String user = "gregor";

String password = "passl23";
String session = "";

String current name, new name;

CCSGAuthenticationAndAuthorizationService service = new
CCSGAuthenticationAndAuthorizationService () ;

AuthenticationAndAuthorizationService port =

service.getAuthenticationAndAuthorizationServicePort () ;

Raritan.

A brand of O fpgrarsd

47

set service end point(service, (BindingProvider)port);

CCsGNodeManagementService node service = new
CCSGNodeManagementService () ;

NodeManagementService node service port =
node_ service.getNodeManagementServicePort () ;

set service end point(node service,
(BindingProvider)node service port);

try

session = port.signOn(user, password);
} catch

(security.service.webservice.bl.cc.raritan.com.AuthenticationAndAuthorizationExceptic
ex)

auth exception handler(ex, "signOn()");

System.exit (1) ;

current name = get input("Enter the name of the node to change: ");

new name = get input("Enter the new name: ");

if(current name != null && new name != null)

try

if (node service port.renameNode(session, current name, new name))

System.out.println("Node name successfully changed to " + new name);
else
System.err.println("renameNode () failed without an exception.");

Raritan.

& brand of O fgrarad

}

catch(node.service.webservice.bl.cc.raritan.com.NodeManagementException

ex)

{

System.out.println("NodeManagementException: " +
ex.getFaultInfo () .getMessage())

System.out.println("\t" + ex.getFaultInfo().getCode());

// ex.printStackTrace () ;

else

System.err.println("Could not change node name without the current
and new names.");

try

port.signOff (user, session);

} catch

(security.service.webservice.bl.cc.raritan.com.AuthenticationAndAuthorizationExceptic
ex)

{

auth exception handler (ex, "signOff ()");

}

Raritan.

Abrand of O begeand 49

Appendix A Web Services Development in Visual
Studio

The following sections describe how to create a Web Services client for the CCSG written in C# using
Windows Communication Foundation (WCF). This description is based on Microsoft Visual Studio 2022
with .NET desktop development (.NET Framework 4.7.2) and Windows Communication Foundation
installed.

In This Chapter

Creating a CC-SG Web ServiceinaProject. 50
Sample Application for CH. e 51

Creating a CC-SG Web Service in a Project

=

Create a Console App (.NET Framework).

N

Select Project > Add Service Reference
3. Set the address to the URL of the CC-SG service WSDL.

e For example: http://CCSGADDRESS/CommandCenterWebServices/
AuthenticationAndAuthorizationServicePort?wsdl

Note: If you change the namespace from the default (ServiceReferencel), reference it later as the
endpoint contract.

4. Right click app.config in Solution Explorer and select Edit WCF Configuration.
5. Under Bindings, select the binding matching the service.
e For example: CC_SG_AuthenticationAndAuthorizationServiceSoapBinding
Copy the name and delete the binding.
Right click Bindings and select New Binding Configuration.
Select customBinding,
Set Name to that of the deleted binding.
e For example: CC_SG_AuthenticationAndAuthorizationServiceSoapBinding

v XN

10. Remove httpTransport.

11. Add httpsTransport.

12. Open httpsTransport.

13. Set RequireClientCertificate to True.

14. Open textMessageEncoding.

15. Set MessageVersion to Soapl1.

16. Select the matching service under Client->Endpoints.

17. Change the Binding to customBinding.

18. Verify that BindingConfiguration matches the new customBinding's name.

Raritan.

& brand of O fgrarad

19. Edit the Address to use HTTPS, your CCSG's address, and port 9443 (rather than 8080).

Note: You must edit the URL and set the binding for each service that you use. The same binding can be
used for every CCSG service.

20. Save the configuration.
21. Edit the C# source.

¢ Instantiate the client.

¢ Tell the client which client certificate to use for identity.
22. Access the CC-SG API (signOn in this example).

Sample Application for C#

using System;

using System.Security.Cryptography.X509Certificates;

// For testing with self signed server certificate:

//using System.Net;

//using System.Net.Security;

namespace CCWSClient

{

internal class Program

{

static void Main(string[] args)

{

try

{

// Uncomment for testing: accept default self signed certificate.
//ServicePointManager.ServerCertificatevValidationCallback =

// delegate (object obj, X509Certificate certificate, X509Chain chain, SslPolicyErrors
errors)

/7 A

// X509Certificate server certificate =

// X509Certificate.CreateFromCertFile (@"C:\cc_certificate.cer”);
// return server certificate.Equals(certificate);

/]y

CCAuth.AuthenticationAndAuthorizationServiceClient auth service =
new CCAuth.AuthenticationAndAuthorizationServiceClient () ;

// Prove identity to CC-SG using client certificate.

auth service.ClientCredentials.ClientCertificate.SetCertificate(
StoreLocation.CurrentUser, StoreName.My, X509FindType.FindBySubjectName,
"FQDN"); // Same as entered to create client certificate in Admin client.
Console.WritelLine ("Connecting to CC-SG...");

auth service.Open();

// BAuthenticate and show the session ID
Console.WritelLine (auth service.signOn ("user", "password")) ;

}

catch (Exception e)

{

Console.WritelLine (e.ToString()) ;

}

—— e e

Raritan.

A brand of O fpgrarsd

51

Appendix A Web Services Development in a Shell

This appendix describes web services development in a shell. Web Services are built on HTTP which can
be accessed from a low level. All of the APl operations and data are contained within XML. The XML is
normally and most easily handled by a WS development tool kit, but it is possible to process manually
or by your own preferred methods. You can find information on using WSDL to construct SOAP
messages online. This guide is an example to get you started."

The signOn() request is formatted as:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-ENV="http://
schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Header/>

<S:Body>

<ns2:signOn xmlns:ns2="http://com.raritan.cc.bl.webservice.service.security/types">
<String l>testuser</String 1> <!-- Enter user name. -->

<String 2>password</String 2> <!-- Enter password. -->

</ns2:signOn>

</S:Body>

</S:Envelope>

In This Chapter

Usingwget and curl.o e 52

Using wget and curl

HTTPS capable software, such as wget and curl, can handle transport of the XML data to and from the
CC-SG. All clients must present the client certificate to the CC-SG. See Add Web Services API Client
Configuration on CC-SG (on page 7).

If needed, OpenSSL can reformat the PKCS12 certificate and key to a format the HTTPS software can
use. For curl and wget, the P12 file can be converted to separate PEM formatted certificate and key files
as follows:

openssl pkcsl2 -in client.pl2 -nokeys -out client.pem -nodes
openssl pkcsl2 -in client.pl2 -nocerts -out key.pem -nodes

Raritan.

& brand of O fgrarad

Given the XML, client certificate, and client key above, wget can be used with the following arguments:

e Post file as text/xml to the CC-SG.

-—-post-file=signOn.xml --header="Content-Type: text/xml"
e Reduced security is useful for testing (i.e. the CC-SG is using a self signed certificate).
--no-check-certificate

e Present client certificate to the CC-SG.
--certificate=client.pem --certificate-type=PEM

e Use matching private key.

--private-key=key.pem --private-key-type=PEM

e Put the result into a file.

-0 response.xml

e URL to reach the service.

https://CCSGADDRESS: 9443 /CommandCenterWebServices/
AuthenticationAndAuthorizationServicePort

curl can do the same operation with the following arguments:

e Post text/xml to the CC-SG.

-X POST -H "Content-Type: text/xml"
e Reduced security is useful for testing (i.e. the CC-SG is using a self signed certificate).
-k

e Send contents of file.

-d @signOn.xml

e Present client certificate to the CC-SG.
--cert ./client.pem --cert-type PEM
e Use matching private key.

--key ./key.pem --key-type PEM

e URL to reach the service.

https://CCSGADDRESS:9443/CommandCenterWebServices/
AuthenticationAndAuthorizationServicePort

» Successful response:

A successful response contains the expected session ID from signOn().

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ns2:signOnResponse xmlns:ns2="http://com.raritan.cc.bl.webservice.service.security/
types">

<result>SESSIONID</result>

</ns2:signOnResponse>

</soap:Body>

</soap:Envelope>

» Error response:

A typical error response will include the message and code of the exceptions defined in this document.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

Raritan.

& brand of O logeand 53

54

<soap:Body>

<soap:Fault>

<faultcode>soap:Server</faultcode>

<faultstring>Fault occurred while processing.</faultstring>

<detail>

<nsl:AuthenticationAndAuthorizationException xmlns:nsl="http://
com.raritan.cc.bl.webservice.service.security/types">

<message xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:ns2="http://
com.raritan.cc.bl.webservice.service.security/types" xsi:nil="true"/>
<code xmlns:ns2="http://com.raritan.cc.bl.webservice.service.security/
types">INVALID_CREDENTIALS</Code>
</nsl:AuthenticationAndAuthorizationException>

</detail>

</soap:Fault>

</soap:Body>

</soap:Envelope>

Bash script using curl:

#!/bin/bash

CCSG=10.0.0.103 # Address of CC-SG

USER=testuser

PASSWORD=password

TARGETID=269 # The ID of the target interface available from Bookmark Node Interface
and InterfaceData returned from API operations like getNodesForUser ().
CERT=./client.pem

KEY=./key.pem

#DEBUG=true

AUTHSERV=AuthenticationAndAuthorizationServicePort
NODESERV=NodeManagementServicePort

CONTENT="Content-Type: text/xml"

EXITCODE=100

set -E

trap "[\"\$?\" -ne SEXITCODE] || echo Script failed. && exit 1" ERR
if ["$DEBUG" = true]; then

set -x

else

exec 2>/dev/null

fi

function get needle()

{

NEEDLE="S$1"

HAYSTACK="$2"

STRIP="S53"

if grep -g "S${NEEDLE}" <<< "${HAYSTACK}"; then

SED="s/.*\ (<${NEEDLE}>.*<\/${NEEDLE}>\) .*/\1/"

if ["SSTRIP" = true]; then
SED="s/.*<${NEEDLE}>\ (.*\)<\/S${NEEDLE}>.*/\1/"
fi

sed -e "S$SED" <<< "SHAYSTACK"

else

echo "Could not find $NEEDLE in result. Quitting."
exit $EXITCODE

fi

}

function curl rpc()

{

SERVICE="S$1"

XML="<S:Envelope xmlns:S=\"http://schemas.xmlsoap.org/soap/envelope/\" xmlns:SOAP-
ENV=\"http://schemas.xmlsoap.org/soap/envelope/\">
<SOAP-ENV:Header/>

<S:Body>

$2

Raritan.

& brand of O fgrarad

</S:Body>
</S:Envelope>"

OUT=$ (curl -X POST -H "$CONTENT" -k -d @- --cert $CERT --cert-type PEM --key $KEY --
key-type PEM https://$CCSG:9443/CommandCenterWebServices/$SERVICE ${DEBUG:+-v} <<<
" $XML ")

get needle result "$OUT"

}

function signOnOff ()

{

OP="$1"

USER="$2"

PASS_SESS="S$3"

XML="<ns2:sign${0OP} xmlns:ns2=\"http://com.raritan.cc.bl.webservice.service.security/
types\">

<String 1>${USER}</String 1>

<String 2>${PASS SESS}</String 2>
</ns2:sign${0OP}>"

OUT:$(curl_rpc SAUTHSERV "S$XML")

get needle result "$OUT" true

}

function signOn ()

{

signOnOff On "$1" "$2"

}

function signOff ()

{

signOnOff Off "$1™ "s2"

}

function getInterfaceURL()

{

SESSIONID="$1"

INTERFACEID="S2"

XML="<ns2:getInterfaceURL xmlns:ns2=\"http://com.raritan.cc.bl.webservice.service.node/
types\">

<String 1>${SESSIONID}</String 1>

<String 2>${INTERFACEID}</String 2>

<String 3 xmlns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\" xsi:nil=\"true\"/>
</ns2:getInterfaceURL>"

OUT:$(curl_rpc SNODESERV "S$XML")

OUT=$ (get_needle result "SOUT" true)

PROTOCOL=S (get_needle protocol "SOUT" true)
PORT=S$ (get _needle port "SOUT" true)
URLPATH=$ (get needle path "SOUT" true)
TOKENKEY=S (get needle tokenKey "SOUT" true)
TOKENVALUE=S (get _needle tokenValue "SOUT" true)
echo "${PROTOCOL}://${CCSG}:${PORT}S{URLPATH}&S { TOKENKEY }=${ TOKENVALUE}"
}

SESSIONID="$ (signOn $USER $PASSWORD)"

echo Session ID: $SESSIONID

URL=$ (getInterfaceURL $SESSIONID $TARGETID)

if [-n "SURL"]; then
printf "Connect to target with interface %s using URL:\n%s\n" $TARGETID $SURL
else

printf "Failed to build URL.\nSigning off: %$s" $(signOff S$USER $SESSIONID)

Raritan.

A brand of O fpgrarsd

Appendix A Web Services Development in C

This example uses Axis2C for handling the WS communications and was tested with 1.6.0 on Ubuntu
10.04 LTS - the Lucid Lynx.

In This Chapter

Sample Application for C. e 56

Sample Application for C

This example uses Axis2C for handling the WS communications (tested with 1.6.0 on Ubuntu 10.04 LTS -
the Lucid Lynx.

*

This source code is owned by Raritan, Inc. and is confidential
and proprietary information distributed solely pursuant to a
confidentiality agreement or other confidentiality obligation.

It is intended for informational purposes only and is distributed
"as is" with no support and no warranty of any kind.

Copyright (c) 2012 Raritan Computer, Inc. All rights reserved.
Reproduction of any element without the prior written consent of
Raritan, Inc. is expressly forbidden.

P

*

*/

#include <stdio.h>

#include <axiom.h>

#include <axis2 util.h>

#include <axiom soap.h>

#include <axis2 client.h>

#include <axis2 svc_client.h>

#define TRUE 1

#define FALSE 0

#define CC_ADDRESS "10.0.0.102"

#define CCWS_URL "https://" CC_ADDRESS ":9443/CommandCenterWebServices/"
#define CCWS URL AUTH CCWS URL "AuthenticationAndAuthorizationServicePort"
#define CCWS NS AUTH "http://com.raritan.cc.bl.webservice.service.security/types"
#define CC WS SIGNON "signOn"

#define CC WS SIGNOFF "signOff"

#define CC WS RESULT "result"

#define CCWS URL NODE CCWS URL "NodeManagementServicePort"

#define CCWS NS NODE "http://com.raritan.cc.bl.webservice.service.node/types"
#define GET CC_APPLET URL "getCCSGAppletURL"

char g debug enable = FALSE;

char*

my strcpy alloc(

const char *source

)

{

int len = strlen(source) + 1;

char *dest = malloc(len);

snprintf (dest, len, "%s", source);

return dest;

}

void

set service destination(

const axutil env_t * env,

Raritan.

& brand of O fgrarad

axis2 svc_client t *client,

const char *destination

)

{

axis2 options_t *options = axis2 svc_client get options(client, env);
axis2 endpoint ref t *endpoint ref = axis2 endpoint ref create(env, destination);
axis2 options_set to(options, env, endpoint ref);
}

axiom node t *

send_message (

const axutil env_t * env,

axis2 svc_client t *client,

axiom node t *message

)

{

axiom node t *response;

axis2 char t *temp = NULL;

if (g _debug _enable &&

(temp = axiom node to string(message, env)))
{

printf ("\nSending message:\n%s\n", temp);
AXIS2 FREE (env->allocator, temp);

}

response = axis2 svc client send receive(client, env, message);
if (response)

{

if (g _debug enable)

{

temp = axiom node to string(response, env);

if (temp)

printf ("\nResponse message:\n%s\n", temp);
AXIS2 FREE (env->allocator, temp);

}

}

else

{

AXIS2 LOG_ERROR (env->log, AXIS2 LOG SI,

"Stub invoke FAILED: Error code:" " %d :: %s",
env—>error—>error_number,
AXISZ_ERROR_GET_MESSAGE(env—>error));

printf ("No response!\n");

}

return response;

}

axiom node t *

signOnOff (

const axutil env_t * env,

axis2 svc_client t *client,

char is_signOn,

const char *user,

const char *second parameter

)

{

axiom node t *node = NULL;

axiom element t *echo om ele = NULL;

axiom node t *text om node = NULL;

axiom element t *text om ele = NULL;
axiom_namespace_t *ns = NULL;

set service destination(env, client, CCWS_URL_AUTH);

ns = axiom namespace create(env, CCWS NS AUTH, "ns2");

echo_om ele = axiom element create(env, NULL, (is signOn ? CC_WS_ SIGNON
CC_WS_SIGNOFF), ns, &node);

text om ele = axiom element create(env, node, "String 1", NULL, &text om node) ;

axiom element set text(text om ele, env, user, text om node);

Raritan.

A brand of O fpgrarsd

text om ele = axiom element create(env, node, "String 2", NULL, &text om node) ;
axiom element set text(text om ele, env, second parameter, text om node);
return send message(env, client, node);

}

char* // session

signOn (

const axutil env_t * env,

axis2 svc_client t *client,

const char *user,

const char *password

)

{

printf(CC_WS_SIGNON " ()\n");

axiom element t *response_element;

axiom node t *session node;

axiom element t *session_element;

axiom node t *response node = signOnOff(env, client, TRUE, user, password);
axis2 char_t *session;

if (!response node)

{

printf("signOn FAILED!\n");

return NULL;

}

response_element = (axiom element t *) axiom node get data element(response node,
env);

if(axutil strcmp(axiom element get localname(response_element, env), CC_WS SIGNON
"Response") != 0)

{

printf("signOn FAILED: Invalid response.\n");

return NULL;

}

session _node = axiom node get first element(response node, env);

if(!session_node)

{

printf("signOn FAILED: No session node.\n");

return NULL;

}

session_element = (axiom element t *) axiom node get data element(session node, env);
if(axutil strcmp(axiom element get localname(session_element, env),
CC_WS_RESULT) != 0)

{

printf("signOn FAILED: No result in response.\n");
return NULL;

}

session = axiom element get text(session_element, env, session node);
printf("\tSession ID: %$s\n", session);

return my strcpy alloc(session);

}

void

signOff (

const axutil env_t * env,

axis2 svc_client t *client,

const char *user,

const char *session

)

{

printf(CC_WS_SIGNOFF " ()\n");

signOnOff (env, client, FALSE, user, session);
}

void

getCCSGAppletURL (

const axutil env_t * env,

axis2 svc_client t *client,

const char *session

Raritan.

& brand of O fgrarad

)

{

axiom node t *node = NULL;

axiom element t *echo om ele = NULL;
axiom node t *text om node = NULL;
axiom element t *text om ele = NULL;
axiom namespace t *ns = NULL;

axiom element t *response_element;
axiom node t *child node;

axiom element t *temp element;

axiom node t *response node;

axis2 char_ t *temp;

char *path = NULL;

char *port = NULL;

char *protocol = NULL;

char *tokenKey = NULL;

char *tokenValue = NULL;

printf(GET_CC_APPLET URL " ()\n");
// create request

set _service destination(env, client, CCWS_URL_NODE);

ns = axiom namespace create(env, CCWS_NS NODE, "ns2");

echo _om _ele = axiom element create(env, NULL, GET CC APPLET URL, ns, é&node);
text om ele = axiom element create(env, node, "String 1", NULL, &text om node) ;
axiom element set text(text om ele, env, session, text om node);

response_node = send message(env, client, node);

// extract URL from response

if (!response node)

{
printf("FAILED!\n");

return;

}

response_element = (axiom element t *) axiom node get data element(response node,
env);

if(axutil strcmp(axiom element get localname(response element, env),
GET_CC_APPLET URL "Response") != 0)

{

printf("FAILED: Invalid response.\n");

return;

}

// result node

child node = axiom node get first child(response node, env);
if(!child node)

{

printf("FAILED: No result node.\n");

return;

}

temp element = (axiom element t *) axiom node get data element(child node, env);

if(axutil strcmp(axiom element get localname(temp element, env), CC_WS RESULT) !=
0)

{

printf("FAILED: No result in response.\n");

return;

}

// URL components within result

child node = axiom node get first child(child node, env);

while (axiom node is complete(response node, env) && child node)

{

temp element = (axiom element t *) axiom node get data element(child node, env);
char *name = axiom element get localname(temp element, env);

char *text;

text = axiom element get text(temp_element, env, child node);

if(axutil strcmp(name, "path") == 0)

path = text;

else if(axutil strcmp(name, "port") == 0)

Raritan.

A brand of O fpgrarsd

port = text;

else if(axutil strcmp(name, "protocol") == 0)

protocol = text;

else if(axutil strcmp(name, "tokenKey") == 0)

tokenKey = text;

else if(axutil strcmp(name, "tokenValue") == 0)
tokenValue = text;

else

printf("\tMissed data: %s (%s)\n", name, text);

child node = axiom node get next sibling(child node, env);

}

printf("\t%s://%s:%s%s?%s=%s\n", protocol, CC_ADDRESS, port, path, tokenKey,
tokenValue);

}

int

main (

int argc,

char **argv)

{

const axutil env_t *env = NULL;
axis2 options_t *options = NULL;

axis2 svc_client t *client NULL;
char user[] = "gregor";
char password[] = "passl23";

char *session;

env = axutil env create_all ("ccwstest.log", AXIS2 LOG_LEVEL TRACE);
options = axis2 options_create(env);

client = axis2 svc _client create(env, "/usr/lib/axis2/");

if (!client)

{

printf("client creation failed.\n");

AXIS2 LOG ERROR (env->log, AXIS2 LOG SI,

"Client creation failed: Error code:" " %d :: %s",
env—>error—>error_number,
AXISZ_ERROR_GET_MESSAGE(env—>error));

return -1;

}

axis2 svc_client set options(client, env, options);

// CC uses SOAP 1.1

axis2 options_set soap version(options, env, AXIOM SOAP11l);
axis2 svc_client engage module(client, env, AXIS2 MODULE ADDRESSING);
// CC services

session = signOn(env, client, user, password);
getCCSGAppletURL(env, client, session);

// Note: Do not signOff() until the applet session is complete.
if(session)

signOff (env, client, user, session);

if (client)

{

axis2 svc _client free(client, env);

client = NULL;

}

if (env)

{

axutil_env_free((axutil_env_t *) env);

env = NULL;

}

return 0;

}

Raritan.

& brand of O fgrarad

Index

A
Access Information 9
AccessMethod 20

Add Web Services API Client Configuration on CC-

SG7

addAssociationToNode 27

addCategory 37

addElementToCategory 38

addUser 31

addUserToGroup 32

API Definitions 10

AssociationData 20

Authentication and Authorization Services 14
AuthenticationAndAuthorizationException 14

C

Calling a Web Service 44

Category Management Services 36
CategoryData 36
CategoryManagementException 36
CCSGUser 29

Certificate Management 40

Certificates 9

Certificates information for Java users 42
Change Log 5

Choose a WS Library 42
closelnterfaceConnections 17
ClusterStatus 11

Common Data Types 10

Connecting to CC-SG 7

Connectioninfo 14

Constructing a URL from URLObject 23
Conventions 10

Creating a CC-SG Web Service in a Project 50

D
Data Types 33, 36, 11, 14, 18, 20, 29
deleteAssociationFromNode 27

Raritan

A brand of O fgrand

deleteCategory 38

deleteDevice 19
deleteElementFromCategory 38
deleteReport 36

deleteUser 31
deleteUserFromGroup 32

Device Management Services 17
DeviceData 18
DeviceManagementException 18
DeviceStatus 18

E
editCategory 37
editUser 31

F
forceSignOff 16

G
getAccessMethodsForNode 24
getAccessMethodsForNodeBylnterfacelD 25
getAllUsers 31

getCategory 37
getCCSGAppletURL 24
getCCSGHTMLClientURL 24
getDevice 19
getDeviceStatus 19
getlmportStatus 13
getinterfaceConnections 17
getinterfaceURL 24
getNodeByAssociation 26
getNodeByAttribute 25
getNodeByInterfaceName 26
getNodeByName 25
getNodePower 28
getNodesForUser 27
getNodeStatus 27
getReportDocument 35
getReportRecords 35

61

getSessions 15
getSysteminfo 13
getUser 31

I
importCSV 13
ImportStatus 12

Installing the Client Certificate into a Key Store

(Microsoft Windows) 41
InterfaceAvailabilityAndStatus 20
InterfaceConnectioninfo 15
InterfaceData 21

Introduction 5

J
Java keytool 40

L

Logging Management Services 32
LoggingManagementException 34

N

Node Management Services 20
NodeData 21
NodeManagementException 23
NodePowerStatus 22
NodeStatus 22

0]
OpenSSL 40

)

PowerlnterfaceStatus 22

R

Remotely Authorized Users 9
renameElementIinCategory 38
renameNode 28

ReportData 33

ReportRecord 33

runReport 34

S

Sample Application for C 56
Sample Application for C# 51
Sample Application for Java 44
Saving the CCSG's Server Certificate 40
Services 34, 37, 13, 15, 19, 24, 31
SessionInfo 14

setNodePower 28

Setting the CCSG Address 42
setUserPassword 19

signoff() 16

signOn() 16

Standard Wild Card Search Field 11
System Management Services 11
SystemInfo 12
SystemManagementException 11

U

Unsupported Authentication and Authorization

Services 17

URLObject 22

User Management Services 29
UserManagementException 30
Using wget and curl 52

W

Web Services Development in a Shell 52

Web Services Development in C 56
Web Services Development in Java 42

Web Services Development in Visual Studio 50

WSDL URLs 9

Raritan

& brand of O fgrarad

	Contents
	Introduction
	Change Log
	Connecting to CC-SG
	Add Web Services API Client Configuration on CC-SG

	Access Information
	WSDL URLs
	Certificates
	Remotely Authorized Users

	API Definitions
	Conventions
	Common Data Types

	Standard Wild Card Search Field
	System Management Services
	Data Types
	SystemManagementException
	ClusterStatus
	SystemInfo
	ImportStatus

	Services
	getSystemInfo
	importCSV
	getImportStatus

	Authentication and Authorization Services
	Data Types
	AuthenticationAndAuthorizationException
	SessionInfo
	ConnectionInfo
	InterfaceConnectionInfo

	Services
	getSessions
	signOn()
	signoff()
	forceSignOff
	closeInterfaceConnections
	getInterfaceConnections

	Unsupported Authentication and Authorization Services

	Device Management Services
	Data Types
	DeviceData
	DeviceManagementException
	DeviceStatus

	Services
	getDevice
	deleteDevice
	getDeviceStatus
	setUserPassword

	Node Management Services
	Data Types
	AccessMethod
	AssociationData
	InterfaceAvailabilityAndStatus
	InterfaceData
	NodeData
	NodePowerStatus
	NodeStatus
	PowerInterfaceStatus
	URLObject
	Constructing a URL from URLObject

	NodeManagementException

	Services
	getCCSGAppletURL
	getCCSGHTMLClientURL
	getInterfaceURL
	getAccessMethodsForNode
	getAccessMethodsForNodeByInterfaceID
	getNodeByName
	getNodeByAttribute
	getNodeByInterfaceName
	getNodeByAssociation
	getNodesForUser
	getNodeStatus
	addAssociationToNode
	deleteAssociationFromNode
	renameNode
	getNodePower
	setNodePower

	User Management Services
	Data Types
	CCSGUser
	UserManagementException

	Services
	getUser
	getAllUsers
	addUser
	editUser
	deleteUser
	addUserToGroup
	deleteUserFromGroup

	Logging Management Services
	Data Types
	ReportRecord
	ReportData
	LoggingManagementException

	Services
	runReport
	getReportRecords
	getReportDocument
	deleteReport

	Category Management Services
	Data Types
	CategoryData
	CategoryManagementException

	Services
	getCategory
	addCategory
	editCategory
	deleteCategory
	addElementToCategory
	renameElementInCategory
	deleteElementFromCategory

	Certificate Management
	Java keytool
	OpenSSL
	Saving the CCSG's Server Certificate
	Installing the Client Certificate into a Key Store (Microsoft Windows)

	Web Services Development in Java
	Choose a WS Library
	Certificates information for Java users
	Setting the CCSG Address
	Calling a Web Service
	Sample Application for Java

	Web Services Development in Visual Studio
	Creating a CC-SG Web Service in a Project
	Sample Application for C#

	Web Services Development in a Shell
	Using wget and curl

	Web Services Development in C
	Sample Application for C

	Index

