
LuaPLC
Introduction

Raritan Inc.

August 21, 2020

LuaPLC Introduction

Contents

Contents 1

1 LuaPLC Briefly 2

2 Quickstart 2
2.1 Requirements . 2
2.2 Upload and Run a Lua Script . 2

3 Writing Your Own Scripts 3
3.1 Lua . 3
3.2 Example Script . 3
3.3 IDL to Lua Mapping . 4

3.3.1 IDL Files . 4
3.3.2 Enumerations . 5
3.3.3 Interface References and Methods 5

3.4 Root Objects . 6
3.5 Remote Objects . 6
3.6 Accessing Link Units . 6
3.7 Script Arguments . 7
3.8 Exit Handler . 7
3.9 Delaying Execution . 7
3.10 Exception Handling . 8
3.11 Limitations . 8

3.11.1 Out of Memory . 9

4 Deploying and Running Scripts 9
4.1 Running Scripts from USB Drives 9
4.2 Running Scripts from DHCP/TFTP 10
4.3 Starting Scripts with Event Rules 10

5 Links 10

Page 1

LuaPLC Introduction

1 LuaPLC Briefly

Lua - A powerful and fast scripting language, simple to learn and use
PLC - Programmable Logic Controller

The LuaPLC feature lets you write small programs and execute them directly
on the PDU. Scripts can be deployed using the web GUI, via JSON-RPC or with
USB flash drives. They can be started and stopped manually, triggered by event
rules or scheduled with timer events.

Lua scripts have full access to the PDU data model as well as a few selected con-
figuration interfaces. Additionally, scripts can use JSON-RPC to control remote
PDUs.

2 Quickstart

2.1 Requirements

• A firmware with LuaPLC support (3.3.10 and later)

• The Raritan JSON-RPC SDK

2.2 Upload and Run a Lua Script

1. Download the JSON-RPC SDK and unpack it

2. Open the device web GUI in a browser, login as administrator

3. Navigate to Device Settings >Lua Scripts, click Create New Script

4. Click Load Local File and select get info.lua from the folder LuaPLC Examples/basic
in the SDK

5. Select a name for the script, e.g. get info

6. Click Create at the bottom of the page

7. On the script status page, click Start. The Script Output window should
now show some information about the PDU.

Page 2

LuaPLC Introduction

3 Writing Your Own Scripts

3.1 Lua

Lua is a powerful scripting language, easy to learn and simple to use. See the links
section below to find about more the language itself.

3.2 Example Script

Listing 1: Lua example script

-- load the "Pdu" module

require "Pdu"

-- acquire a proxy object for the pdumodel.Pdu interface

pdu = pdumodel.Pdu:getDefault ()

-- print the PDU model name

metadata = pdu:getMetaData ()

print("PDU Model Name: " .. metadata.nameplate.model)

-- print the current sensor reading for each inlet

inlets = pdu:getInlets ()

for _, inlet in ipairs(inlets) do

label = inlet:getMetaData () .label

current_sensor = inlet:getSensors () .current

current = current_sensor:getReading () .value

print("Inlet " .. label .. " Current Reading: " ..

current .. " A")

end

There are a few details worth mentioning in the script above:

• Its first step is to load the Pdu module, and all modules it depends on.
This module is required to use interfaces from the IDL-defined pdumodel
namespace.

• The next line uses the static method pdumodel.Pdu:getDefault() to ac-
quire a proxy object for the pdumodel.Pdu interface. This proxy object can
be used to invoke the methods defined in the Pdu.idl file. It’s the starting
point for all scripts working with the PDU data model. All other PDU-
related objects (inlets, outlets, sensors, etc.) can be acquired from here.

Page 3

LuaPLC Introduction

• Next, the script invokes the getMetaData() method on the Pdu proxy
object. Note the : character between object and method name, it’s a
critical part of the syntax! As defined in IDL, the call returns a pdu-
model.Pdu.MetaData structure which includes the model name in the field
nameplate.model.

• In the following line, the script invokes the getInlets() method on the Pdu
proxy. The method returns a list of proxy objects for the pdumodel.Inlet
interface defined in Inlet.idl. For a typical PDU with a single inlet, the list
contains exactly one item.

• The for loop in the next line iterates over the returned inlet proxies. ipairs
is a Lua-builtin function that enumerates the elements in a list. For each
iteration, it returns the index and value of the next list element. Since we’re
only interested in the value (the inlet proxy), we assign the index to a variable
called .

• For each loop iteration, the variable inlet is updated to contain the next
inlet proxy from the list. The loop body calls the methods getMetaData()
and getSensors() on this proxy. Again, take note of the : syntax to invoke
object methods.

• Finally, the script selects the current sensor from the returned sensors struc-
ture. It contains a proxy for the sensors.NumericSensor interface. The script
calls getReading() on that proxy to retrieve the latest sensor reading and
prints the result to the script output.

3.3 IDL to Lua Mapping

Table 1 shows how IDL data types are mapped into Lua.

3.3.1 IDL Files

Each IDL file is mapped to a Lua library that must be loaded with the require
statement before use. For instance, to use the Pdu interface defined in the Pdu.idl
file, use the statement require ”Pdu”.

Loading a Lua library automatically loads all directly or indirectly referenced
libraries. For instance, requiring the Pdu automatically includes many other mod-
ules, like Inlet, Outlet, NumericSensor or PeripheralDeviceManager.

Page 4

LuaPLC Introduction

Table 1: IDL Lua type mapping

IDL Lua
boolean boolean

int number
long number
float number

double number
string string
time number

enumeration number
structure table

vector table
map table

interface table

3.3.2 Enumerations

An IDL enumeration value is represented by a number in Lua. Additionally, there
are constants for each element of the enumeration defined in IDL. For instance, to
set the startupState field in the pdumodel.Pdu.Settings structure can be set to any
of the values in the pdumodel.Pdu.StartupState table:

Listing 2: Example for using an enumeration variable

settings = pdu:getSettings ()

settings.startupState =

pdumodel.Pdu.StartupState.PS_LASTKNOWN

pdu:setSettings(settings)

3.3.3 Interface References and Methods

References to IDL interfaces are represented by Lua tables containing the defined
methods. To invoke a method, append the method name to the object reference
separated by : character. IDL in parameters are mapped to required function
arguments in Lua. Methods return a tuple of IDL-defined return value (unless
void) and output parameters (if any).

Listing 3: Lua method mapping

-- one in parameter , one return value

rc = pdu:setSettings(settings)

if rc ~= 0 then

print("setSettings failed , rc = " .. rc)

Page 5

LuaPLC Introduction

end

-- no in parameters , three out parameters

inlet , ocp , poles = outlet:getIOP ()

3.4 Root Objects

Root objects are the entry points for using the IDL-defined API. They are sin-
gle instances of IDL interfaces that can be acquired using a static getDefault()
method. References to all other interfaces, like inlets, outlets and sensors, can be
reached directly or indirectly from one of these root instances.

The following interfaces contain a static getDefault() method to acquire a root
instance:

• event.Engine

• luaservice.Manager

• pdumodel.Pdu

3.5 Remote Objects

Remote objects are proxies that communicate with a remote object instance via
JSON-RPC. Remote proxies can be created for any supported interface using the
static newRemote() method. Expected parameters are a resource ID (URL
suffix) and an HTTP agent (an object containing a reference to a remote PDU’s
JSON-RPC service).

The signature to create a new HTTP agent is: agent.HttpAgent:new(host,
user, password [, port [, useTls]]). Required parameters are a host name or
IP address, a user name and a password. Optional parameters are a port number
and a boolean flag whether to use HTTP or HTTPS.

Listing 4: Example for using a remote Pdu

ha = agent.HttpAgent:new("10 .0.42.3", "user", "password")

pdu = pdumodel.Pdu:newRemote("/model/pdu/0", ha)

print("Device Name: " .. pdu:getSettings ().name)

3.6 Accessing Link Units

If the PDU is a cascade master it is possible to communicate with remote ob-
ject instances on the link units. This is done by using a remote proxy, created

Page 6

LuaPLC Introduction

with the static newRemote() method as described above. As before, the ex-
pected parameters are a resource ID (URL suffix) and an HTTP agent. The
HTTP agent for accessing a certain link unit in the cascade is created by calling
agent.HttpAgent:getForLinkUnit(linkId).

Listing 5: Example for accessing a link PDU

ha = agent.HttpAgent:getForLinkUnit (1)

pdu = pdumodel.Pdu:newRemote("/model/pdu/0", ha)

print("Device Name: " .. pdu:getSettings ().name)

3.7 Script Arguments

Lua scripts can have arguments that are specified upon startup. Arguments are
key-value pairs that can be accessed through the global table ARGS. Arguments
can be specified persistently in the script options or using the ”Start Script with
Arguments” function. Arguments passed at script start override the default argu-
ments from the script options

Listing 6: Get command line arguments

paramOutlet = ARGS["outlet"] -- value for key outlet

paramDelay = ARGS["delay"] -- value for key delay

3.8 Exit Handler

If a script implements a global function named ExitHandler(), that function will
be executed when the script stops unexpectedly, either because it crashes or is
terminated. As a best practice, put this function at the top of the script (right
after the require statements) and do not use any global variables within.

Listing 7: Exit handler usage

require "Pdu"

-- my special exit handler

function ExitHandler ()

print("Exiting now")

end

3.9 Delaying Execution

The built-in sleep function can be used to pause the script for a defined time.
The argument is specified in seconds, but fractional numbers are supported for
sub-second delays.

Page 7

LuaPLC Introduction

Listing 8: Simple Lua sleep function demonstration

sleep (2) -- a 2 second pause

3.10 Exception Handling

Without precautions, Lua scripts are terminated upon system errors in an IDL
model calls (e.g. because using an object reference that doesn’t exist). The built-
in Lua function pcall(f [, args...]) can be used to execute function f in protected
mode. With pcall, the function to be called and its arguments must be specified
separately. This includes the reference to the object the method should be invoked
on, which must be passed as a first argument. The convenient syntax with :
character cannot be used unless the method call is wrapped in an anonymous
function:

Listing 9: Correct use of pcall() example

-- Correct use of pcall (): Pass object reference explicitly

err , msg = pcall(outlet.setSettings , outlet , s)

-- Correct use of pcall (): Wrap method call in anonymous

function

err , msg = pcall(function () outlet:setSettings(s) end)

-- The following will NOT work:

err , msg = pcall(outlet:setSettings(s))

-- test if error happens

if err == false then

print("error caught: " .. msg)

else

print("no error")

end

3.11 Limitations

There are some Lua script limitations:

• Number of deployed scripts

• Script size (per script and total)

• Memory usage per script

Page 8

LuaPLC Introduction

• Script CPU utilization

The actual limits can be queried using the getEnvironment() method of the
luaservice.Manager interface.

3.11.1 Out of Memory

Memory usage per script is limited. A script allocating too much memory will
be killed by the system. A message like LuaSvcScript: Out of Memory.
Aborting ... is written to the script output.

4 Deploying and Running Scripts

Scripts can be deployed via the following interfaces:

• Web GUI

• JSON-RPC

• USB Flash Drive

• DHCP/TFTP

4.1 Running Scripts from USB Drives

In addition to uploading scripts to the PDU, script files can be executed directly
from a USB mass storage device. You need to put the script on a USB drive,
along with a control file called (for historical reasons) fwupdate.cfg. The control
file needs to supply the administrator credentials and a reference to the script file:

user=admin
password=r a r i t a n
e x e c u t e l u a s c r i p t=my scr ipt . lua

The script will be started as soon as the USB drive is plugged into the PDU.
Any output will be stored in a separate log file on the drive. If the script is still
running by the time the USB drive is disconnected it will be terminated. You
can register an ExitHandler, but its runtime is limited to three seconds before the
script forcibly is killed.

Page 9

LuaPLC Introduction

4.2 Running Scripts from DHCP/TFTP

Running scripts from a TFTP server works similar to the USB drive method.
Check the appendix in the PDU User Guide for details about the required con-
figuration of the DHCP and TFTP servers. Runtime for scripts started via this
method is limited to 60 seconds. Script output will be written back to the TFTP
server, if the server allows it.

4.3 Starting Scripts with Event Rules

Lua scripts can be started or stopped as an action in the event rules engine. Use the
web GUI (Device Settings >Event Rules to create a new action. Select Start/Stop
Lua Script as action, then select the script you want to control.

Scripts started by an event rule will receive a number of arguments containing
information about the matching event rule and the event triggering it. Arguments
are stored in the global table ARGS.

5 Links

Some Lua links:

http://www.lua.org
The offical Lua homepage. Includes a detailed reference manual.

http://www.lua.org/pil/contents.html
The online version of the book ”Programming in Lua” (third edition).

http://tylerneylon.com/a/learn-lua/
Lern Lua in 15 minutes - more or less. To program with LuaPLC you need
to know sections 1, 2 and 3. Sections 3.1 and 3.2 are nice to know.

https://en.wikipedia.org/wiki/Lua (programming language)
Wikipedia article about Lua.

Page 10

